1、人教版初二上册压轴题数学检测试卷答案1已知,如图1,射线分别与直线相交于两点,的平分线与直线相交于点,射线交于点,设,且(1) _,_;直线与的位置关系是_;(2)如图2,若点是射线上任意一点,且,试找出与之间存在的数量关系,证明你的结论;(3)若将图中的射线绕着端点逆时针方向旋转(如图3),分别与相交于点和时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由2如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(0,a),点B(b,0),且a、b满足a2-4a+4+0(1)求a,b的值;(2)以AB为边作RtABC,点C在直线AB的右侧,且
2、ACB45,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与 x轴交于点D,BC与y轴交于点E,连接 DE,过点C作CFBC交x轴于点F求证:CF=BC;直接写出点C到DE的距离3在ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作ADE,使AD=AE,DAE =BAC,连接CE(1)如图1,当点D在线段BC上,如果BAC=90,则BCE=_度;(2)设,如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由;当点在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论4在平面直角坐标系中,点A(a,0),点B(0,b),已
3、知a,b满足(1)求点A和点B的坐标;(2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;:(3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标5在中,点在边上,且是射线上一动点(不与点重合,且),在射线上截取,连接当点在线段上时,若点与点重合时,请说明线段;如图2,若点不与点重合,请说明;当点在线段的延长线上时,用等式表示线段之间的数量关系(直接写出结果,不需要证明)6阅读材料1:对于两个正实数,由于,所以,即,所以得到,并且当时,阅读材料2:
4、若,则 ,因为,所以由阅读材料1可得:,即的最小值是2,只有时,即=1时取得最小值.根据以上阅读材料,请回答以下问题:(1)比较大小 (其中1); -2(其中-1)(2)已知代数式变形为,求常数的值(3)当= 时,有最小值,最小值为 (直接写出答案).7在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a8b+200(1)求a,b的值;(2)点P在直线AB的右侧;且APB45,若点P在x轴上(图1),则点P的坐标为 ;若ABP为直角三角形,求P点的坐标8如图1,A(2,6),C(6,2),ABy轴于点B,CDx轴于点D(1)求证:AOBCOD;(2)
5、如图2,连接AC,BD交于点P,求证:点P为AC中点;(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EFEFCE且EFCE,点G为AF中点连接EG,EO,求证:OEG45【参考答案】2(1)30,30,AB/CD;(2)+=180,证明见解析;(3)不变,【分析】(1)利用非负数的性质可知:=40,推出EMF=MFN即可解决问题;(2)结论:FMN+解析:(1)30,30,AB/CD;(2)+=180,证明见解析;(3)不变,【分析】(1)利用非负数的性质可知:=40,推出EMF=MFN即可解决问题;(2)结论:FMN+GHF=180只要证明GHPN即可解决问题;(3)
6、结论:的值不变,=2如图3中,作PEM1的平分线交M1Q的延长线于R只要证明R=FQM1,FPM1=2R即可;【详解】解:(1),60-2=0,-30=0,=30,PFM=MFN=30,EMF=30,EMF=MFN,ABCD;(2)结论:FMN+GHF=180,理由如下:如图2中, ABCD,MNF=PME,MGH=MNF,PME=MGH,GHPN,GHM=FMN,GHF+GHM=180,FMN+GHF=180;(3)的值不变,=2理由如下:如图3中,作PEM1的平分线交M1Q的延长线于R,ABCD,PEM1=PFN,PER=PEM1,PFQ=PFN,PER=PFQ,ERFQ,FQM1=R,设
7、PER=REB=x,PM1R=RM1B=y,则有:,可得EPM1=2R,EPM1=2FQM1,=2【点睛】本题考查几何变换综合题、平行线的判定和性质、角平分线的定义、非负数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造平行线解决问题3(1)a2,b-1;(2)满足条件的点C(2,1)或(1,-1);(3)证明见解析;1【分析】(1)可得(a2)2+0,由非负数的性质可得出答案;(2)分两种情况:BAC=9解析:(1)a2,b-1;(2)满足条件的点C(2,1)或(1,-1);(3)证明见解析;1【分析】(1)可得(a2)2+0,由非负数的性质可得出答案;(2)分两
8、种情况:BAC=90或ABC=90,根据等腰直角三角形的性质及全等三角形的性质可求出点C的坐标;(3)如图3,过点C作CLy轴于点L,则CL=1=BO,根据AAS可证明BOECLE,得出BE=CE,根据ASA可证明ABEBCF,得出BE=CF,则结论得证;如图4,过点C作CKED于点K,过点C作CHDF于点H,根据SAS可证明CDECDF,可得BAE=CBF,由角平分线的性质可得CK=CH=1【详解】(1)a24a+4+0,(a2)2+0,(a-2)20,0,a-2=0,2b+2=0,a=2,b=-1;(2)由(1)知a=2,b=-1,A(0,2),B(-1,0),OA=2,OB=1,ABC是
9、直角三角形,且ACB=45,只有BAC=90或ABC=90,、当BAC=90时,如图1,ACB=ABC=45,AB=CB,过点C作CGOA于G,CAG+ACG=90,BAO+CAG=90,BAO=ACG,在AOB和BCP中, ,AOBCGA(AAS),CG=OA=2,AG=OB=1,OG=OA-AG=1,C(2,1),、当ABC=90时,如图2,同的方法得,C(1,-1);即:满足条件的点C(2,1)或(1,-1)(3)如图3,由(2)知点C(1,-1),过点C作CLy轴于点L,则CL=1=BO,在BOE和CLE中,BOECLE(AAS),BE=CE,ABC=90,BAO+BEA=90,BOE
10、=90,CBF+BEA=90,BAE=CBF,在ABE和BCF中,ABEBCF(ASA),BE=CF,CFBC;点C到DE的距离为1如图4,过点C作CKED于点K,过点C作CHDF于点H,由知BE=CF,BE=BC,CE=CF,ACB=45,BCF=90,ECD=DCF,DC=DC,CDECDF(SAS),BAE=CBF,CK=CH=1【点睛】此题考查三角形综合题,非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,坐标与图形的性质,等腰三角形的性质,点到直线的距离,角平分线的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题4(1)90;(2),理由见解析;当点D在射
11、线BC上时,a+=180,当点D在射线BC的反向延长线上时,a=【分析】(1)可以证明BADCAE,得到BACE,证明ACB解析:(1)90;(2),理由见解析;当点D在射线BC上时,a+=180,当点D在射线BC的反向延长线上时,a=【分析】(1)可以证明BADCAE,得到BACE,证明ACB45,即可解决问题;(2)证明BADCAE,得到BACE,BACB,即可解决问题;证明BADCAE,得到ABDACE,借助三角形外角性质即可解决问题【详解】解:(1)AB=AC,BAC=90,ABC=ACB=45,DAE=BAC,BAD=CAE,AB=AC,AD=AE,BADCAE(SAS)ABC=AC
12、E=45,BCE=ACB+ACE=90,故答案为:;(2)理由:,即又,如图:当点D在射线BC上时,+=180,连接CE,BAC=DAE,BAD=CAE,在ABD和ACE中,ABDACE(SAS),ABD=ACE,在ABC中,BAC+B+ACB=180,BAC+ACE+ACB=BAC+BCE=180,即:BCE+BAC=180,+=180,如图:当点D在射线BC的反向延长线上时,=连接BE,BAC=DAE,BAD=CAE,又AB=AC,AD=AE,ABDACE(SAS),ABD=ACE,ABD=ACE=ACB+BCE,ABD+ABC=ACE+ABC=ACB+BCE+ABC=180,BAC=18
13、0-ABC-ACB,BAC=BCE=;综上所述:点D在直线BC上移动,+=180或=【点睛】该题主要考查了等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点及其应用问题;应牢固掌握等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点5(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;(2)解析:(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得,通过求解一元一次方程,得,;结合坐标的
14、性质分析,即可得到答案;(2)如图,过点F作FHAO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案;(3)过点N分别作NQON交OM的延长线于点Q,NGPN交EM的延长线于点G,再分别过点Q和点N作QREG于点R,NSEG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解【详解】(1),(2)如图,过点F作FHAO于点HAFAEFHA=AOE=90, AFH=EAO又AF=AE
15、,在和中 AH=EO=2,FH=AO=4OH=AO-AH=2F(-2,4) OA=BO, FH=BO在和中 HD=OD HD=OD=1D(-1,0)D(-1,0),F(-2,4);(3)如图,过点N分别作NQON交OM的延长线于点Q,NGPN交EM的延长线于点G,再分别过点Q和点N作QREG于点R,NSEG于点S, 等腰NQ=NO,NGPN, NSEG , , 点E为线段OB的中点 等腰NG=NP, QNG=ONP在和中 NGQ=NPO,GQ=PO,PO=PBPOE=PBE=45NPO=90NGQ=90QGR=45. 在和中 QR=OE在和中 QM=OM.NQ=NO,NMOQ等腰 在和中 NS
16、=EM=4,MS=OE=2N(-6,2)【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解6(1)证明见解析;证明见解析;(2)BFAE-CD【分析】(1)根据等边对等角,求到,再由含有60角的等腰三角形是等边三角形得到是等边三角形,之后根据等边三角形的性质以及邻补角的性质得解析:(1)证明见解析;证明见解析;(2)BFAE-CD【分析】(1)根据等边对等角,求到,再由含有60角的等腰三角形是等边三角形得到是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到,推出,根据全等三角形
17、的性质即可得出结论;过点A做AGEF交BC于点G,由DEF为等边三角形得到DADG,再推出AEGF,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论【详解】(1)证明:,且E与A重合,是等边三角形在和中 如图2,过点A做AGEF交BC于点G,ADB60DEDFDEF为等边三角形AGEFDAGDEF60,AGDEFD60DAGAGDDADGDADEDGDF,即AEGF由易证AGBADCBGCDBFBGGFCDAE(2)如图3,和(1)中相同,过点A做AGEF交BC于点G,由(1)可知,AE=GF,DC=BG
18、,故【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键7(1);(2);(3)0,3【分析】(1)根据求差法比较大小,由材料1可知将结果用配方法变形即可得出结论.(2)根据材料(2)的方法,把代数式变形为,解答即可;(3)先将变形为,由材料解析:(1);(2);(3)0,3【分析】(1)根据求差法比较大小,由材料1可知将结果用配方法变形即可得出结论.(2)根据材料(2)的方法,把代数式变形为,解答即可;(3)先将变形为,由材料(2)可知时(即x=0,)有最小值【详解】解:(1),所以;当时,由阅读材料1可得,所以;(2),所以
19、;(3)x0,即:当时,有最小值,当x=0时,有最小值为3.【点睛】本题主要考查了分式的混合运算和配方法的应用读懂材料并加以运用是解题的关键8(1)a2,b4;(2)(4,0);P点坐标为(4,2),(2,2)【分析】(1)利用非负数的性质解决问题即可(2)根据等腰直角三角形的性质即可解决问题分两种情形:解析:(1)a2,b4;(2)(4,0);P点坐标为(4,2),(2,2)【分析】(1)利用非负数的性质解决问题即可(2)根据等腰直角三角形的性质即可解决问题分两种情形:如图2中,若ABP=90,过点P作PCOB,垂足为C如图3中,若BAP=90,过点P作PDOA,垂足为D分别利用全等三角形的
20、性质解决问题即可【详解】(1)a2+4a+4+b28b+160(a+2)2+(b4)20a2,b4(2)如图1中,APB45,POB90,OPOB4,P(4,0)故答案为(4,0)a2,b4OA2OB4又ABP为直角三角形,APB45只有两种情况,ABP90或BAP90如图2中,若ABP90,过点P作PCOB,垂足为CPCBBOA90,又APB45,BAPAPB45,BABP,又ABO+OBPOBP+BPC90,ABOBPC,ABOBPC(AAS),PCOB4,BCOA2,OCOBBC422,P(4,2)如图3中,若BAP90,过点P作PDOA,垂足为DPDAAOB90,又APB45,ABPA
21、PB45,APAB,又BAD+DAP90,DPA+DAP90,BADDPA,BAOAPP(AAS),PDOA2,ADOB4,ODAD0A422,P(2,2)综上述,P点坐标为(4,2),(2,2)【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题9(1)见解析;(2)见解析;(3)见解析【分析】(1)根据即可证明;(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;(3)延解析:(1)见解析;(2)见解析;(3)见解析【分析】(1)根据即可证明;(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;(3)延长到,使,连接,延长交于点,根据证明,得出,故,由平行线的性质得出,进而推出,根据证明,故,即可证明【详解】(1)轴于点,轴于点,;(2)如图2,过点作轴,交于点,轴, 在与中,即点为中点;(3)如图3,延长到,使,连接,延长交于点,即【点睛】本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键