资源描述
人教版初二上册期末数学综合检测试卷
一、选择题
1.下列图标是节水、节能、低碳和绿色食品的标志,其中是轴对称图形的是( )
A. B. C. D.
2.蚕丝是大自然中的天然纤维,是中国古代文明产物之一,也成为散发着现代科学技术魅力的新材料.某蚕丝的直径大约是0.000016米,0.000016用科学记数法表示为( )
A. B. C. D.
3.下列运算正确的是( )
A.3a2﹣a2=3 B.(a2)3=a6 C.a6÷a3=a2 D.(2a)3=6a3
4.若式子有意义,则的取值范围为( )
A. B. C.且 D.
5.下列等式从左到右的变形,是因式分解的是( )
A. B.
C. D.
6.下列分式变形一定成立的是( )
A. B. C. D.
7.如图,点、在线段上,若,则添加下列条件,不一定能使的是( )
A., B.,
C., D.,
8.若关于x的不等式组无解,且关于y的分式方程=3有非负整数解,则符合条件的所有整数a的和为( )
A.﹣2 B.2 C.5 D.0
9.如图,有10个形状大小一样的小长方形①,将其中的3个小长方形①放入正方形②中,剩余的7个小长方形①放入长方形③中,其中正方形②中的阴影部分面积为21,长方形③中的阴影部分面积为93,那么一个小长方形①的面积为( )
A.5 B.6 C.9 D.10
10.如图,在和中,,,,,连接,交于点,连接.下列结论:①;②;③平分;④平分.其中正确的个数为( )
A.1个 B.2个 C.3个 D.4个
二、填空题
11.若分式值为,则的值为______.
12.点与关于轴的对称,则______.
13.已知ab=1,则①+=___;②+=___.
14.若,则__________.
15.如图,点P是∠AOB内任意一点,OP=5cm,点M、N分别是OB、OA边上的点,当△PMN周长的最小值是5cm时,则∠AOB= ____________ .
16.若是完全平方式,则k的值为______________.
17.已知,则的值为____.
18.如图,,,、分别为线段和射线上的一点,若点从点出发向点运动,同时点从点出发向点运动,二者速度之比为,运动到某时刻同时停止,在射线上取一点,使与全等,则的长为________.
三、解答题
19.分解因式:
(1);
(2).
20.先化简,再求值,其中.
21.已知:如图,点D在线段AC上,点B在线段AE上,AE=AC,BE=DC,求证:∠E=∠C.
22.在△ABC中,∠C>∠B,AE平分∠BAC.
(1)如图(1),AD⊥BC于D,若∠C=75°,∠B=35°,求∠EAD;
(2)如图(1),AD⊥BC于D,判断∠EAD与∠B,∠C数量关系∠EAD=(∠C﹣∠B)是否成立?并说明你的理由;
(3)如图(2),F为AE上一点,FD⊥BC于D,这时∠EFD与∠B、∠C又有什么数量关系? ;(不用证明)
23.随着高考、中考的到来,某服装店老板预测有关“势在必得”“逢考必过”之类的短袖T恤衫能畅销,委托某服装车间加工280件此类服装,现分配给甲、乙两人加工,已知乙加工的件数比甲的2倍少80件.
(1)甲、乙加工服装件数分别是______件和______件;
(2)若乙每天比甲多加工5件,且两人所用时间相同,求乙每天加工服装件数.
24.阅读以下内容解答下列问题.
七年级我们学习了数学运算里第三级第六种开方运算中的平方根、立方根,也知道了开方运算是乘方的逆运算,实际上乘方运算可以看做是“升次”,而开方运算也可以看做是“降次”,也就是说要“升次”可以用乘方,要“降次”可以用开方,即要根据实际需要采取有效手段“升”或者“降”某字母的次数.本学期我们又学习了整式乘法和因式分解,请回顾学习过程中的法则、公式以及计算,解答下列问题:
(1)对照乘方与开方的关系和作用,你认为因式分解的作用也可以看做是 .
(2)对于多项式x3﹣5x2+x+10,我们把x=2代入此多项式,发现x=2能使多项式x3﹣5x2+x+10的值为0,由此可以断定多项式x3﹣5x2+x+10中有因式(x﹣2),【注:把x=a代入多项式,能使多项式的值为0,则多项式一定含有因式(x﹣a)】,于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),分别求出m、n后再代入x3﹣5x2+x+10=(x﹣2)(x2+mx+n),就可以把多项式x3﹣5x2+x+10因式分解,这种因式分解的方法叫“试根法”.
①求式子中m、n的值;
②用“试根法”分解多项式x3+5x2+8x+4.
25.如图,在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足.
(1)直接写出______,______;
(2)连接AB,P为内一点,.
①如图1,过点作,且,连接并延长,交于.求证:;
②如图2,在的延长线上取点,连接.若,点P(2n,−n),试求点的坐标.
26.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.
(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.
①求证:AD=BE;
②求∠AEB的度数.
(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.
【参考答案】
一、选择题
2.D
解析:D
【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.
【详解】解:A、不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,不符合题意;
B、不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,不符合题意;
C、不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,不符合题意;
D、能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,符合题意;
故选:D.
【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
3.B
解析:B
【分析】科学记数法的表示形式为 的形式,中1≤|a|<10,n为整数.确定n的值时,看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】解:0.000016=1.6×.
故选:B.
【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中1≤|a|<10,n为整数,表示时关键要正确定a的值以及n的值.
4.B
解析:B
【分析】利用合并同类项的法则,幂的乘方与积的乘方的法则,同底数幂的除法的法则对各项进行运算即可.
【详解】解:A、3a2-a2=2a2,故A不符合题意;
B、(a2)3=a6,故B符合题意;
C、a6÷a3=a3,故C不符合题意;
D、(2a)3=8a3,故D不符合题意;
故选:B.
【点睛】本题主要考查同底数幂的除法,幂的乘方与积的乘方,合并同类项,解答的关键是对相应的运算法则的掌握.
5.C
解析:C
【分析】二次根式有意义的条件和分式分母有意义的条件即可解得.
【详解】∵式子有意义
∴,
解得且
故选:C.
【点睛】此题考查了二次根式和分式有意义的条件,解题的关键是列出不等式求解.
6.D
解析:D
【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断即可.
【详解】解:A. 从左边到右边的变形不属于因式分解,故本选项不符合题意;
B. 从左边到右边的变形不属于因式分解,故本选项不符合题意;
C. 从左边到右边的变形是整式乘法,不属于因式分解,故本选项不符合题意;
D从左边到右边的变形属于因式分解,故本选项符合题意.
故答案为D.
【点睛】本题主要考查了因式分解的意义,正确应用分解因式的定义成为解答本题的关键.
7.B
解析:B
【分析】根据分式的基本性质,进行计算即可解答.
【详解】解:A、,故A不符合题意;
B、,故B符合题意;
C、,故C不符合题意;
D、,故D不符合题意;
故选:B
【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键.
8.B
解析:B
【分析】利用三角形全等的判定方法进行分析即可.
【详解】解:A.添加∠C=∠D,AC=DE可利用ASA判定△ABC≌△EFD,故此选项不合题意;
B.添加BC=FD,AC=ED不能判定△ABC≌△EFD,故此选项符合题意;
C.添加∠ABC=∠DFE,AC=DE可利用AAS判定△ABC≌△EFD,故此选项不合题意;
D.添加AC=DE,AB=EF可利用SAS判定△ABC≌△EFD,故此选项不合题意;
故选:B.
【点睛】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
9.B
解析:B
【分析】由不等式组无解确定出a的范围,再由分式方程有非负整数解,确定出a的值即可.
【详解】解:不等式组 ,整理得:,
由不等式组无解,得到:≤2,
∴a≤4,
方程=3两边同时乘以y﹣2,
得:y=≥0,且≠2,
∴a≥﹣2且a≠2,
∴﹣2≤a≤4且a≠2,
∴整数a的值有:﹣2,4,所以和为2.
故选:B.
【点睛】此题考查了解一元一次不等式组,以及解分式方程,熟练掌握运算法则是解本题的关键.
10.A
解析:A
【分析】设小长方形①的长为x,宽为y,由题意易得正方形②的边长为x+y,长方形③的长为3x+y,宽为x+3y,然后可得,进而问题可求解.
【详解】解:设小长方形①的长为x,宽为y,由题意得:正方形②的边长为x+y,长方形③的长为3x+y,宽为x+3y,
∴…..④,…..⑤,
由④得:,由⑤得:,
∴,
∴,即小长方形①的面积为5;
故选:A.
【点睛】本题主要考查多项式乘以多项式及完全平方公式与图形面积,熟练掌握多项式乘以多项式及完全平方公式是解题的关键.
11.C
解析:C
【分析】由全等三角形的判定及性质对每个结论推理论证即可.
【详解】∵
∴
∴
又∵,
∴
∴
故①正确
∵
∴
由三角形外角的性质有
则
故②正确
作于,于,如图所示:
则°,
在和中,,
∴,
∴,
在和中,
∴,
∴
∴平分
故④正确
假设平分
则
∵
∴
即
由④知
又∵为对顶角
∴
∴
∴
∴在和中,
∴
即AB=AC
又∵
故假设不符,故不平分
故③错误.
综上所述①②④正确,共有3个正确.
故选:C.
【点睛】本题考查了全等三角形的判定及性质,灵活的选择全等三角形的判定的方法是解题的关键,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路.
二、填空题
12.2
【分析】根据分式值为零及分式有意义的条件列方程及不等式求解.
【详解】解:由题意可得,
解得:,
故答案为:.
【点睛】本题考查分式值为零的条件,理解当分子为零且分母不等于零时分式的值为零是解题关键.
13.7
【分析】根据两个点关于x轴对称时,横坐标不变,纵坐标互为相反数,可得a、b的值,进而可得a+b的值.
【详解】解:∵点M(a,-4)与N(3,b)关于x轴的对称,
∴a=3,b=4,
∴a+b=3+4=7,
故答案为:7
【点睛】此题主要考查了关于x轴的对称点的坐标特点,关键是掌握:点P(x,y)关于x轴的对称点P′的坐标是(x,-y).
14. 1 1
【分析】①先通分,然后根据同分母分式相加,即可化简题目中的式子,然后将ab的值代入即可解答本题;
②先通分,然后根据同分母分式相加,即可化简题目中的式子,然后将ab的值代入即可解答本题.
【详解】①,
当ab=1时,原式=,
故答案为:1;
②,
当ab=1时,原式=,
故答案为:1.
【点睛】本题考查的是分式的加法,熟练掌握分式的加法法则是解决本题的关键.
15.8
【分析】首先将化为,再根据同底数幂的除法,得出,即,再将等式代入即可得出答案.
【详解】解:∵,
∴,
∴,
∴,
故答案为:8.
【点睛】本题主要考查了同底数幂的除法和幂的乘方,解题关键是熟练掌握同底数幂的除法和幂的乘方的计算公式.同底数幂的除法计算公式:,幂的乘方计算公式:.
16.30°##30度
【分析】分别作点P关于OA、OB的对称点D、C,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=DM,OP=OC,∠COB=∠POB
解析:30°##30度
【分析】分别作点P关于OA、OB的对称点D、C,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=DM,OP=OC,∠COB=∠POB;PN=CN,OP=OD,∠DOA=∠POA,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.
【详解】解:分别作点P关于OA、OB的对称点D、C,连接CD,
分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:
∵点P关于OA的对称点为D,
∴PM=DM,OP=OD,∠DOA=∠POA,
∵点P关于OB的对称点为C,
∴PN=CN,OP=OC,∠COB=∠POB,
∴OC=OP=OD=5,∠AOB=∠COD,
∵△PMN周长的最小值是5cm,
∴PM+PN+MN=5,
∴DM+CN+MN=5,
即CD=5,
∴OC=OD=CD,
即△OCD是等边三角形,
∴∠COD=60°,
∴∠AOB=30°;
故答案为:30°.
【点睛】本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明△OCD是等边三角形是解决问题的关键.
17.9
【分析】根据完全平方公式求出k=32,再求出即可.
【详解】解:∵多项式4x2-12x+k是一个完全平方式,
∴(2x)2-2•2x•3+k是一个完全平方式,
∴k=32=9,
故答案
解析:9
【分析】根据完全平方公式求出k=32,再求出即可.
【详解】解:∵多项式4x2-12x+k是一个完全平方式,
∴(2x)2-2•2x•3+k是一个完全平方式,
∴k=32=9,
故答案为:9.
【点睛】本题考查了完全平方式,能熟记完全平方式是解此题的关键,完全平方式有a2+2ab+b2和a2-2ab+b2.
18.【分析】由变形可得:,即可求得、,然后把和代入即可求解.
【详解】解:∵
∴,即,
∴,
∴把和代入得:.
故答案为4.
【点睛】本题主要考查了完全平方公式因式分解,熟记完全平方公式
解析:
【分析】由变形可得:,即可求得、,然后把和代入即可求解.
【详解】解:∵
∴,即,
∴,
∴把和代入得:.
故答案为4.
【点睛】本题主要考查了完全平方公式因式分解,熟记完全平方公式并通过移项对已知条件进行配方是解答本题的关键.
19.2或6##6或2
【分析】设BE=t,则BF=2t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况:
情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;
情况二:当B
解析:2或6##6或2
【分析】设BE=t,则BF=2t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况:
情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;
情况二:当BE=AE,BF=AG时,列方程解得t,可得AG.
【详解】解:设BE=t,则BF=2t,AE=6-t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:
情况一:当BE=AG,BF=AE时,
∵BF=AE,AB=6,
∴2t=6-t,
解得:t=2,
∴AG=BE=t=2;
情况二:当BE=AE,BF=AG时,
∵BE=AE,AB=6,
∴t=6-t,
解得:t=3,
∴AG=BF=2t=2×3=6,
综上所述,AG=2或AG=6.
故答案为:2或6.
【点睛】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键.
三、解答题
20.(1);(2).
【分析】(1)直接利用平方差进行分解即可;
(2)首先提取公因式2(x-y),进而利用平方差公式分解因式得出答案.
【详解】解:(1)
(2)原式.
【点睛】本题考查了提
解析:(1);(2).
【分析】(1)直接利用平方差进行分解即可;
(2)首先提取公因式2(x-y),进而利用平方差公式分解因式得出答案.
【详解】解:(1)
(2)原式.
【点睛】本题考查了提取公因式法以及公式法分解因式,正确应用公式是解题的关键.
21.,2
【分析】根据分式的加减乘除运算进行化简,然后将代入求解即可.
【详解】解:原式
当时,
原式
.
【点睛】此题考查了分式的化简求值,解题的关键是掌握分式的加减乘除运算法则.
解析:,2
【分析】根据分式的加减乘除运算进行化简,然后将代入求解即可.
【详解】解:原式
当时,
原式
.
【点睛】此题考查了分式的化简求值,解题的关键是掌握分式的加减乘除运算法则.
22.见解析
【分析】利用SAS证明△ABC≌△ADE即可得出结论.
【详解】证明:∵AE=AC,BE=DC,
∴AB=AD,
在△ABC和△ADE中,
,
∴△ABC≌△ADE(SAS),
解析:见解析
【分析】利用SAS证明△ABC≌△ADE即可得出结论.
【详解】证明:∵AE=AC,BE=DC,
∴AB=AD,
在△ABC和△ADE中,
,
∴△ABC≌△ADE(SAS),
∴∠E=∠C.
【点睛】本题主要考查了全等三角形的判定与性质,证明△ABC≌△ADE是解题的关键.
23.(1)20°;(2)成立,理由见解析;(3)∠EFD=(∠C﹣∠B)
【分析】(1)根据角平分线的性质和三角形的内角和定理计算即可;
(2)根据角平分线的性质和三角形内角和定理计算即可;
(3
解析:(1)20°;(2)成立,理由见解析;(3)∠EFD=(∠C﹣∠B)
【分析】(1)根据角平分线的性质和三角形的内角和定理计算即可;
(2)根据角平分线的性质和三角形内角和定理计算即可;
(3)过A作AG⊥BC于G,根据已知条件证明FD∥AG,得到∠EFD=∠EAG,即可得解;
【详解】解:(1)∵∠C=75°,∠B=35°,
∴∠BAC=180°﹣∠C﹣∠B=70°,
∵AE平分∠BAC,
∴∠EAC=∠BAC=35°,
又∵AD⊥BC,
∴∠DAC=90°﹣∠C=15°,则∠EAD=∠EAC﹣∠DAC=20°;
(2)∵AE平分∠BAC,
∴∠CAE=∠BAC,
∵∠BAC=180°﹣∠B﹣∠C,
∴∠EAC=∠ BAC=90°﹣∠B﹣∠C,
∴∠EAD=∠EAC﹣∠DAC=90°﹣∠B﹣∠C﹣(90°﹣∠C)=(∠C﹣∠B);
(3)如图②,过A作AG⊥BC于G,由(2)知,∠EAG=(∠C﹣∠B),
∵AG⊥BC,
∴∠AGC=90°,
∵FD⊥BC,
∴∠FDG=90°,
∴∠AGC=∠FDG,
∴FD∥AG,
∴∠EFD=∠EAG,
∴∠EFD=(∠C﹣∠B).
故答案是:∠EFD=(∠C﹣∠B).
【点睛】本题主要考查了角平分线的性质,三角形内角和定理,平行线的判定与性质,准确计算是解题的关键.
24.(1)120,160
(2)20
【分析】(1)设甲加工服装x件,乙加工服装y件,根据加工280件此类服装和乙加工的件数比甲的2倍少80件列出方程组,即可得解;
(2)设乙每天加工服装m件,则
解析:(1)120,160
(2)20
【分析】(1)设甲加工服装x件,乙加工服装y件,根据加工280件此类服装和乙加工的件数比甲的2倍少80件列出方程组,即可得解;
(2)设乙每天加工服装m件,则甲每天加工服装(m-5)件,根据两人所用时间相同列出分式方程,解之即可得解.
(1)
解:设甲加工服装x件,乙加工服装y件,
根据题意得:,
解得:,
∴甲加工服装120件,乙加工服装160件;
故答案为:120,160;
(2)
解:设乙每天加工服装m件,则甲每天加工服装(m-5)件,
根据题意得:,
解得:,
经检验,是原方程的解,且符合题意;
∴乙每天加工服装20件.
【点睛】本题考查二元一次方程组和分式方程解决实际问题,解题的关键是找准题干中的等量关系,正确地列出方程(组).
25.(1)降次;(2)①m=﹣3,n=﹣5;②(x+1)(x+2)2.
【分析】(1)根据材料回答即可;
(2)①分别令x=0和x=1即可得到关于m和n的方程,即可求出m和n的值;
②把x=﹣1代
解析:(1)降次;(2)①m=﹣3,n=﹣5;②(x+1)(x+2)2.
【分析】(1)根据材料回答即可;
(2)①分别令x=0和x=1即可得到关于m和n的方程,即可求出m和n的值;
②把x=﹣1代入x3+5x2+8x+4,得出多项式含有因式(x+1),再利用①中方法解出a和b,即可代入原式进行分解.
【详解】解:(1)根据因式分解的定义可知:因式分解的作用也可以看做是降次,
故答案为:降次;
(2)①在等式x3﹣5x2+x+10=(x﹣2)(x2+mx+n)中,
令x=0,可得:,解得:n=-5,
令x=1,可得:,
解得:m=﹣3,
故答案为:m=﹣3,n=﹣5;
②把x=﹣1代入x3+5x2+8x+4,得x3+5x2+8x+4=0,
则多项式x3+5x2+8x+4可分解为(x+1)(x2+ax+b)的形式,
同①方法可得:a=4,b=4,
所以x3+5x2+8x+4=(x+1)(x2+4x+4),
=(x+1)(x+2)2.
【点睛】本题考查了因式分解,二元一次方程组的应用,解题的关键是读懂材料中的意思,利用所学知识进行解答.
26.(1)3,;(2)①见解析;②的坐标为(,)
【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可;
(2)①连接AC,过点B作BN⊥BP,交CP的延长线于点N,利用SAS证明
解析:(1)3,;(2)①见解析;②的坐标为(,)
【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可;
(2)①连接AC,过点B作BN⊥BP,交CP的延长线于点N,利用SAS证明△OPB≌△OCA,再证明△BNP为等腰直角三角形,利用AAS证明△ACD≌△BND,即可证明AD=DB;
②作出如图所示的辅助线,证明△BMP为等腰直角三角形,利用AAS证明△PBF≌△MPE,求得E(2n,n) ,M(3n−3,n),证明点M,E关于y轴对称,得到3n−3+2n=0,即可求解.
【详解】(1)∵,
∴,
∴,,
解得:,,
故答案为:3,;
(2)①连接AC,
∵∠COP=∠AOB=90°,
∴∠COP-∠AOP =∠AOB-∠AOP,
∴,
在△OPB和△OCA中,
,
∴△OPB≌△OCA(SAS),
∴AC=BP,∠OCA=∠OPB=90°,
过点B作BN⊥BP,交CP的延长线于点N,
∵∠COP=90°,OP=OC,
∴∠OCP=∠OPC=∠ACP=45°,
∵∠OPB=90°,
∴∠BPN=45°,
∴△BNP为等腰直角三角形,
∴∠BPN=∠N=45°,
∴BN=BP=AC,
在△ACD和△BND中,
,
∴△ACD≌△BND(AAS),
∴AD=DB;
②∵∠AOB=90°,AO=OB,
∴△AOB为等腰直角三角形,
∴∠OBA=45°,
∵∠MBO=∠ABP,
∴∠MBO+∠OBP=∠ABP+∠OBP=∠OBA=45°,
∴∠MBP=45°,
∵OP⊥BP,
∴△BMP为等腰直角三角形,
∴MP=BP,
过点P作y轴的平行线EF,分别过M,B作ME⊥EF于E,BF⊥EF于F,EF交x轴于G,ME交y轴于H,连接OE,
∴∠MPE+∠EMP=∠MPE +∠FPB=90°,
∴∠EMP=∠FPB,
在△PBF和△MPE中,
,
∴△PBF≌△MPE(AAS),
∴BF=EP,PF=ME,
∵P(2n,−n),
∴BF=EP=EH=2n,PG=EG=n,PF=ME=3−n,
∴MH=ME-EH=3−n−2n=3−3n,
∴E(2n,n) ,M(3n−3,n),
∴点P,E关于x轴对称,
∴OE=OP,∠OEP=∠OPE,
同理OM=OE,点M,E关于y轴对称,
∴3n−3+2n=0,
解得,即点M的坐标为(,).
【点睛】本题考查了坐标与图形、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用全等三角形的性质解决问题.
27.(1)①见解析;②80°;(2)AE=2CF+BE,理由见解析.
【分析】(1)①通过角的计算找出∠ACD=∠BCE,再结合△ACB和△DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全
解析:(1)①见解析;②80°;(2)AE=2CF+BE,理由见解析.
【分析】(1)①通过角的计算找出∠ACD=∠BCE,再结合△ACB和△DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可证出△ACD≌△BCE,由此即可得出结论AD=BE;
②结合①中的△ACD≌△BCE可得出∠ADC=∠BEC,再通过角的计算即可算出∠AEB的度数;
(2)根据等腰三角形的性质结合顶角的度数,即可得出底角的度数,利用(1)的结论,通过解直角三角形即可求出线段AD、DE的长度,二者相加即可证出结论.
【详解】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,
∴∠ACB=∠DCE=180°﹣2×50°=80°,
∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,
∴∠ACD=∠BCE,
∵△ACB,△DCE都是等腰三角形,
∴AC=BC,DC=EC,
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS),
∴AD=BE.
②解:∵△ACD≌△BCE,
∴∠ADC=∠BEC,
∵点A、D、E在同一直线上,且∠CDE=50°,
∴∠ADC=180°﹣∠CDE=130°,
∴∠BEC=130°,
∵∠BEC=∠CED+∠AEB,∠CED=50°,
∴∠AEB=∠BEC﹣∠CED=80°.
(2)结论:AE=2CF+BE.
理由:∵△ACB,△DCE都是等腰直角三角形,
∴∠CDE=∠CED=45°,
∵CF⊥DE,
∴∠CFD=90°,DF=EF=CF,
∵AD=BE,
∴AE=AD+DE=BE+2CF.
【点睛】本题主要考查等腰三角形的性质以及三角形全等的证明,正确理解等腰三角形的性质以及三角形全等的证明是本题的解题关键.
展开阅读全文