1、2024年人教版中学七7年级下册数学期末综合复习试卷(及答案)一、选择题1下列四幅图中,和是同位角的是( )A(1)(2)B(3)(4)C(1)(2)(3)D(1)(3)(4)2下列汽车商标图案中,可以由一个“基本图案”通过连续平移得到的是()ABCD3在平面直角坐标系中,点所在的象限是( )A第一象限B第二象限C第三象限D第四象限4给出以下命题:对顶角相等;在同一平面内, 垂直于同一条直线的两条直线平行;相等的角是对顶角;内错角相等其中假命题有( )A1个B2个C3个D4个5如图,ABCD,ADAC,BAD35,则ACD( )A35B45C55D706下列各式中,正确的是( )A=4B=4C
2、D7如图,已知直线,的平分线交于点F,则等于( )ABCD8已知点,将点作如下平移:第次将向右平移个单位,向上平移个单位得到;第次将向右平移个单位,向上平移个单位得到,第次将点向右平移个单位,向上平移个单位得到,则的坐标为( )ABCD九、填空题9如果,的平方根是,则_十、填空题10在平面直角坐标系中,点P(-2,3)关于直线y=x-1对称的点的坐标是_十一、填空题11如图,AD、AE分别是ABC的角平分线和高,B=60,C=70,则EAD=_十二、填空题12如图,已知AB/EF,B=40,E=30,则C-D的度数为_十三、填空题13如图是长方形纸带,将纸带沿折叠成图,再沿折叠成图,则图中的的
3、度数是_十四、填空题14已知为两个连续的整数,且,则_十五、填空题15如图,在平面直角坐标系中,已知点,连接,交y轴于B,且,则点B坐标为_十六、填空题16在平面直角坐标系中,已知点,且,下列结论:轴,将点A先向右平移5个单位,再向下平移个单位可得到点;若点在直线上,则点的横坐标为3;三角形的面积为,其中正确的结论是_(填序号)十七、解答题17计算:(1);(2)十八、解答题18求下列各式中的值:(1);(2)十九、解答题19如图,点F在线段AB上,点E、G在线段CD上,ABCD(1)若BC平分ABD,D100,求ABC的度数;解:ABCD(已知),ABD+D180( )D100(已知),AB
4、D80又BC平分ABD,(已知),ABCABD ( )(2)若12,求证:AEFG(不用写依据)二十、解答题20如图,的三个顶点坐标分别为,(1)在平面直角坐标系中,画出;(2)将向下平移个单位长度,得到,并画出,并写出点的坐标二十一、解答题21已知:的立方根是,的算术平方根3,是的整数部分(1)求的值;(2)求的平方根二十二、解答题22观察下图,每个小正方形的边长均为1,(1)图中阴影部分的面积是多少?边长是多少?(2)估计边长的值在哪两个整数之间二十三、解答题23已知,点在上,点在 上(1)如图1中,、的数量关系为: ;(不需要证明);如图2中,、的数量关系为: ;(不需要证明)(2)如图
5、 3中,平分,平分,且,求的度数;(3)如图4中,平分,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数二十四、解答题24长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况,如图,灯A射线自顺时针旋转至便立即回转,灯B射线自顺时针旋转至便立即回转,两灯不停交叉照射巡视,若灯A转动的速度是a/秒,灯B转动的速度是b/秒,且a、b满足假定这一带长江两岸河堤是平行的,即,且(1)求a、b的值;(2)若灯B射线先转动45秒,灯A射线才开始转动,当灯B射线第一次到达时运动停止,问A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转
6、动,在灯A射线到达之前若射出的光束交于点C,过C作交于点D,则在转动过程中,与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围二十五、解答题25已知,点为射线上一点(1)如图1,写出、之间的数量关系并证明;(2)如图2,当点在延长线上时,求证:;(3)如图3,平分,交于点,交于点,且:,求的度数【参考答案】一、选择题1A解析:A【分析】互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角【详解】解:根据同位角的定义,图(1)、(2)中,1和2是同位角;图(3)1、2的两边都不在同一条直线上,不是同位角;图(4)1、2不在被截线同侧,不是
7、同位角故选:A【点睛】本题考查同位角的概念,是需要熟记的内容即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角2B【分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解【详解】解:A、可以由一个“基本图案”旋转得到,故本选项错误;B、可以由一个“基本图案”平移得到,故把本选项正解析:B【分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解【详解】解:A、可以由一个“基本图案”旋转得到,故本选项错误;B、可以由一个“基本图案”平移得到,故把本选项正确;C、是轴对称图形,不是基本图案的组合图形,故本选项错误;D、是轴对称图形,不是基本图案
8、的组合图形,故本选项错误故选:B【点睛】本题考查了生活中的平移现象,仔细观察各选项图形是解题的关键3B【分析】根据点的横纵坐标的符号可得所在象限【详解】解:点P的横坐标是负数,纵坐标是正数,点P(-3,1)在第二象限,故选:B【点睛】本题主要考查点的坐标,熟练掌握各象限内点的坐标的特点是解本题的关键,第一、二、三、四象限内的点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-)4B【分析】根据对顶角的性质、平行线的判定和性质进行判断即可【详解】解:对顶角相等,是真命题;在同一平面内,垂直于同一条直线的两条直线平行,是真命题;相等的角不一定是对顶角,原命题是假命题;两直线平行,内错角相
9、等,原命题是假命题故选:B【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的判定和性质,难度较小5C【分析】由平行线的性质可得ADCBAD35,再由垂线的定义可得ACD是直角三角形,进而根据直角三角形两锐角互余的性质即可得出ACD的度数【详解】ABCD,BAD=35,ADCBAD35,ADAC,ADC+ACD90,ACD903555,故选:C【点睛】本题主要考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键6C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得【详解】A、,此项错误;B、,此项错
10、误;C、,此项正确;D、,此项错误;故选:C【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键7B【分析】根据平行线的性质推出,然后结合角平分线的定义求解即可得出,从而得出结论【详解】解:,的平分线交于点F,故选:B【点睛】本题考查平行线的性质和角平分线的定义,理解并熟练运用平行线的基本性质是解题关键8C【分析】解:从到的过程中,找到共向右、向上平移的规律、,令,则共向右、向上平移了:、,即可得出的坐标【详解】解:可将点看成是两个方向的移动,从到的过程中,共向右平移了,共向上平移解析:C【分析】解:从到的过程中,找到共向右、向上平移的规律、,令,则共向右、向上平移了:、,即可得
11、出的坐标【详解】解:可将点看成是两个方向的移动,从到的过程中,共向右平移了,共向上平移了,令,则共向右平移了:,共向上平移了,又,故,故选:C【点睛】本题考查了点的坐标规律问题,解题的关键是找到向右及向上平移的规律,再利用规律进行解答九、填空题9-4【分析】根据题意先求出 ,再代入,即可【详解】解:的平方根是, , ,故答案为:【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值解析:-4【分析】根据题意先求出 ,再代入,即可【详解】解:的平方根是, , ,故答案为:【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值十、填空题10【分析】如图,设点
12、P关于直线y=x1的对称点是点Q,过点P作PAx轴交直线y=x1于点A,连接AQ,先由直线y=x1与两坐标轴的交点坐标确定OBC是等腰直角三角形,然后根据平行线的性质解析:【分析】如图,设点P关于直线y=x1的对称点是点Q,过点P作PAx轴交直线y=x1于点A,连接AQ,先由直线y=x1与两坐标轴的交点坐标确定OBC是等腰直角三角形,然后根据平行线的性质和轴对称的性质可得AP=AQ,PAQ=90,由于点P坐标已知,故可求出点A的坐标,进而可求出点Q坐标【详解】解:如图,设点P关于直线y=x1的对称点是点Q,过点P作PAx轴交直线y=x1于点A,连接AQ,设直线y=x1交x轴于点B,交y轴于点C
13、,则点B(1,0)、点C(0,1),OB=OC=1,OBC=45,PAB=45,P、Q关于直线y=x1对称,AP=AQ,PAB=QAB=45,PAQ=90,AQx轴,P(2,3),且当y=3时,3=x1,解得x=4,A(4,3),AD=3,PA=6=AQ,DQ=3,点Q的坐标是(4,3)故答案为:(4,3)【点睛】本题以平面直角坐标系为载体,考查了直线上点的坐标特点、轴对称的性质、等腰直角三角形的性质等知识,熟练掌握一次函数图象上点的坐标特点和轴对称的性质是解题关键十一、填空题11;【详解】解:由题意可知,B=60,C=70,所以,所以,在三角形BAE中,所以EAD=5故答案为:5【点睛】本题
14、属于对角平分线和角度基本知识的变换求解解析:;【详解】解:由题意可知,B=60,C=70,所以,所以,在三角形BAE中,所以EAD=5故答案为:5【点睛】本题属于对角平分线和角度基本知识的变换求解十二、填空题1210【分析】过点C作CGAB,过点D作DHEF,根据平行线的性质可得ABCGDHEF,从而可得BCG=B=40,EDH=E=30,DCG=CDH,即可求解【详解】解析:10【分析】过点C作CGAB,过点D作DHEF,根据平行线的性质可得ABCGDHEF,从而可得BCG=B=40,EDH=E=30,DCG=CDH,即可求解【详解】解:如图,过点C作CGAB,过点D作DHEF,AB/EF,
15、ABCGDHEF,B=40,E=30,BCG=B=40,EDH=E=30,DCG=CDH,BCD-CDE=BCG-EDH=40-30=10故答案为:10【点睛】本题主要考查了平行线的性质,准确作出辅助线是解题的关键十三、填空题13180-3【分析】由ADBC,利用平行线的性质可得出BFE和CFE的度数,再结合CFG=CFE-BFE及CFE=CFG-BFE,即可求出CFE的度数【详解】解:A解析:180-3【分析】由ADBC,利用平行线的性质可得出BFE和CFE的度数,再结合CFG=CFE-BFE及CFE=CFG-BFE,即可求出CFE的度数【详解】解:ADBC,BFE=DEF=,CFE=180
16、-DEF=180-,图中CFG=CFE-BFE=180-=180-2,图中CFE=CFG-BFE=180-2-=180-3故答案为:180-3【点睛】本题考查了平行线的性质,牢记“两直线平行,内错角相等”及“两直线平行,同旁内角互补”是解题的关键十四、填空题147【分析】由无理数的估算,先求出a、b的值,再进行计算即可【详解】解:,、为两个连续的整数,;故答案为:7【点睛】本题考查了无理数的估算,解题的关键是正确解析:7【分析】由无理数的估算,先求出a、b的值,再进行计算即可【详解】解:,、为两个连续的整数,;故答案为:7【点睛】本题考查了无理数的估算,解题的关键是正确求出a、b的值,从而进行
17、解题十五、填空题15【分析】由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面积可求出的值,则答案可求出【详解】解:(1),如图,连接,设,解析:【分析】由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面积可求出的值,则答案可求出【详解】解:(1),如图,连接,设,点的坐标为,故答案是:【点睛】本题考查了立方根及算术平方根、完全平方公式、三角形的面积、坐标与图形的性质,解题的关键是利用分割的思想解答十六、填空题16【分析】两点纵坐标相同,得到 AB /x轴,即可判断;根据平移规律求得平移后的点的坐标,即可判断;根据两点的坐
18、标特征可知直线BCx轴,即可判断;求得三角形的面积,即可判断解析:【分析】两点纵坐标相同,得到 AB /x轴,即可判断;根据平移规律求得平移后的点的坐标,即可判断;根据两点的坐标特征可知直线BCx轴,即可判断;求得三角形的面积,即可判断【详解】解:A(-2,4),B(3,4),它们的纵坐标相同,AB /x轴,故正确;将点A 先向右平移 5 个单位,再向下平移m个单位可得到点(3,4-m),故错误;B(3,4),C(3,m),它们的横坐标相同,BC x轴,点 D 在直线BC上,点 D的横坐标为 3,故正确;点A(-2,4),B(3, 4),C(3,m),且m4,AB =5,C 点到 AB 的距离
19、为(4-m),三角形 ABC 的面积为,故正确;故答案为:【点睛】本题考查了平行线的判定,坐标和图形变化,平移以及点的坐标特征,明确线段的位置和大小是解题的关键十七、解答题17(1)0 ;(2)2【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可;试题解析:原式=2+2-4=0解析:(1)0 ;(2)【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可;试题解析:原式=2+2-4=0 原式= 十八、解答题18(1)或;(2)【分析】(1)直接
20、根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可【详解】解:(1),或;(2),【点睛】本题主解析:(1)或;(2)【分析】(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可【详解】解:(1),或;(2),【点睛】本题主要考查了利用求平方根和求立方根的方法解方程,解题的关键在于能够熟练掌握相关知识进行求解十九、解答题19(1)两直线平行,同旁内角互补;40;角平分线的定义;(2)见解析【分析】(1)根据平行线的性质求出ABD=80,再根据角平分线的定义求解即可;(2)根据平行线的性质得到1=FGC,等解析:(1)两直线平行,同旁内角互补;40;角
21、平分线的定义;(2)见解析【分析】(1)根据平行线的性质求出ABD=80,再根据角平分线的定义求解即可;(2)根据平行线的性质得到1=FGC,等量代换得到2=FGC,即可判定AEFG【详解】(1)ABCD(已知),ABD+D180(两直线平行,同旁内角互补),D100(已知),ABD80,又BC平分ABD(已知),ABCABD40(角平分线的定义)故答案为:两直线平行,同旁内角互补;40;角平分线的定义;(2)证明:ABCD,1FGC,又12,2FGC,AEFG【点睛】此题考查了平行线的判定与性质,熟记“两直线平行,同旁内角互补”、“两直线平行,内错角相等”、“同位角相等,两直线平行”是解题的
22、关键二十、解答题20(1)见解析;(2)见解析,A1(-2,-1)【分析】(1)先根据坐标描出A、B、C三点,然后顺次连接即可;(2)先根据平行描出A1、B1、C1三点,然后顺次连接即可得到,最后直接读出A点坐解析:(1)见解析;(2)见解析,A1(-2,-1)【分析】(1)先根据坐标描出A、B、C三点,然后顺次连接即可;(2)先根据平行描出A1、B1、C1三点,然后顺次连接即可得到,最后直接读出A点坐标即可【详解】解:(1)如图:ABC即为所求;(2)如图:即为所求,点A1的坐标为(-2,-1)【点睛】本题主要考查了坐标与图形、图形的平移等知识点,根据坐标描出图形是解答本题的关键二十一、解答
23、题21(1);(2)其平方根为【分析】(1)根据立方根,算术平方根,无理数的估算即可求出的值;(2)将(1)题求出的值代入,求出值之后再求出平方根【详解】解:(1)由题得 又,解析:(1);(2)其平方根为【分析】(1)根据立方根,算术平方根,无理数的估算即可求出的值;(2)将(1)题求出的值代入,求出值之后再求出平方根【详解】解:(1)由题得 又, (2)当时, 其平方根为【点睛】本题考查了立方根,平方根,无理数的估算正确把握相关定义是解题的关键二十二、解答题22(1)图中阴影部分的面积17,边长是;(2)边长的值在4与5之间【分析】(1)由图形可以得到阴影正方形的面积等于原来大正方形的面积
24、减去周围四个直角三角形的面积,由正方形的面积等于边长乘以边长,可解析:(1)图中阴影部分的面积17,边长是;(2)边长的值在4与5之间【分析】(1)由图形可以得到阴影正方形的面积等于原来大正方形的面积减去周围四个直角三角形的面积,由正方形的面积等于边长乘以边长,可以得到阴影正方形的边长;(2)根据,可以估算出边长的值在哪两个整数之间【详解】(1)由图可知,图中阴影正方形的面积是:55=17则阴影正方形的边长为:答:图中阴影部分的面积17,边长是(2)所以45边长的值在4与5之间;【点睛】本题主要考查了无理数的估算及算术平方根的定义,解题主要利用了勾股定理和正方形的面积求解,有一定的综合性,解题
25、关键是无理数的估算二十三、解答题23(1)BMEMENEND;BMFMFNFND(2)120(3)FEQ的大小没发生变化,FEQ30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质解析:(1)BMEMENEND;BMFMFNFND(2)120(3)FEQ的大小没发生变化,FEQ30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(BMEEND)BMFFND180,可求解BMF60,进而可求解;(3)根据平行线的性质及角平分线的定义可推知FEQBME,进而
26、可求解【详解】解:(1)过E作EHAB,如图1,BMEMEH,ABCD,HECD,ENDHEN,MENMEHHENBMEEND,即BMEMENEND如图2,过F作FHAB,BMFMFK,ABCD,FHCD,FNDKFN,MFNMFKKFNBMFFND,即:BMFMFNFND故答案为BMEMENEND;BMFMFNFND(2)由(1)得BMEMENEND;BMFMFNFNDNE平分FND,MB平分FME,FMEBMEBMF,FNDFNEEND,2MENMFN180,2(BMEEND)BMFFND180,2BME2ENDBMFFND180,即2BMFFNDBMFFND180,解得BMF60,FME
27、2BMF120;(3)FEQ的大小没发生变化,FEQ30由(1)知:MENBMEEND,EF平分MEN,NP平分END,FENMEN(BMEEND),ENPEND,EQNP,NEQENP,FEQFENNEQ(BMEEND)ENDBME,BME60,FEQ6030【点睛】本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键二十四、解答题24(1),;(2)15秒或63秒;(3)不发生变化,【分析】(1)利用非负数的性质解决问题即可(2)分三种情形,利用平行线的性质构建方程即可解决问题(3)由参数表示,即可判断【详解】解析:(1),;(2)15秒或63秒;(3)不发生变化,【分析】(1)
28、利用非负数的性质解决问题即可(2)分三种情形,利用平行线的性质构建方程即可解决问题(3)由参数表示,即可判断【详解】解:(1),,;(2)设灯转动秒,两灯的光束互相平行,当时,解得;当时,解得;当时,解得,(不合题意)综上所述,当t=15秒或63秒时,两灯的光束互相平行;(3)设灯转动时间为秒,又,而,即【点睛】本题考查平行线的性质和判定,非负数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型二十五、解答题25(1),证明见解析;(2)证明见解析;(3)【分析】(1)过E作EHAB,根据两直线平行,内错角相等,即可得出AED=AEH+DEH=EAF+EDG;
29、(2)设CD与AE交于点H解析:(1),证明见解析;(2)证明见解析;(3)【分析】(1)过E作EHAB,根据两直线平行,内错角相等,即可得出AED=AEH+DEH=EAF+EDG; (2)设CD与AE交于点H,根据EHG是DEH的外角,即可得出EHG=AED+EDG,进而得到EAF=AED+EDG; (3)设EAI=BAI=,则CHE=BAE=2,进而得出EDI=+10,CDI=+5,再根据CHE是DEH的外角,可得CHE=EDH+DEK,即2=+5+10+20,求得=70,即可根据三角形内角和定理,得到EKD的度数【详解】解:(1)AED=EAF+EDG理由:如图1,过E作EHAB, AB
30、CD, ABCDEH, EAF=AEH,EDG=DEH, AED=AEH+DEH=EAF+EDG; (2)证明:如图2,设CD与AE交于点H, ABCD, EAF=EHG, EHG是DEH的外角, EHG=AED+EDG, EAF=AED+EDG; (3)AI平分BAE, 可设EAI=BAI=,则BAE=2, 如图3,ABCD, CHE=BAE=2, AED=20,I=30,DKE=AKI, EDI=+30-20=+10, 又EDI:CDI=2:1, CDI=EDK=+5, CHE是DEH的外角, CHE=EDH+DEK, 即2=+5+10+20, 解得=70, EDK=70+10=80, DEK中,EKD=180-80-20=80【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解解题时注意:三角形的一个外角等于和它不相邻的两个内角的和