资源描述
人教版七年级数学下册期末试卷含答案
一、选择题
1.如图所示,与是一对( )
A.同位角 B.内错角 C.同旁内角 D.对顶角
2.下列各组图形可以通过平移互相得到的是( )
A. B.
C. D.
3.在平面直角坐标系中,点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列句子中,属于命题的是( )
①三角形的内角和等于180度;②对顶角相等;③过一点作已知直线的垂线;④两点确定一条直线.
A.①④ B.①②④ C.①②③ D.②③
5.如图所示,,三角板如图放置,其中,若,则的度数是( )
A. B. C. D.
6.如图,下列各数中,数轴上点A表示的可能是( )
A.4的算术平方根 B.4的立方根 C.8的算术平方根 D.8的立方根
7.在同一个平面内,为50°,的两边分别与的两边平行,则的度数为( ).
A.50° B.40°或130° C.50°或130° D.40°
8.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第棵树种植在点处,其中,,当时,,表示非负实数的整数部分,例如,.按此方案,第2021棵树种植点的坐标为( ).
A. B. C. D.
九、填空题
9.已知非零实数a.b满足|2a-4|+|b+2|++4=2a,则2a+b=_______.
十、填空题
10.点A(-2,1)关于x轴对称的点的坐标是____________________.
十一、填空题
11.如图,DB是的高,AE是角平分线,,则______.
十二、填空题
12.如图,,直角三角板直角顶点在直线上.已知,则的度数为______°.
十三、填空题
13.把一张对边互相平行的纸条折成如图所示,是折痕,若,则______.
十四、填空题
14.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第棵树种植在点处,其中,当时,,表示非负实数的整数部分,例如,. 按此方案,第6棵树种植点为________;第2011棵树种植点________.
十五、填空题
15.已知的面积为,其中两个顶点的坐标分别是,顶点在轴上,那么点的坐标为 ____________
十六、填空题
16.如图所示,已知A1(1,0),A2(1,﹣1)、A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,按一定规律排列,则点A2021的坐标是________.
十七、解答题
17.(1)计算:
(2)比较 与-3的大小
十八、解答题
18.求下列各式中的的值.
(1);
(2).
十九、解答题
19.如图,,,求度数.完成说理过程并注明理由.
解:∵,
∴________( )
又∵,
∴,
∴__________( )
∴( )
∵,
∴______度.
二十、解答题
20.在平面直角坐标系中,△ABC三个顶点的坐标分别是A(﹣2,2)、B(2,0),C(﹣4,﹣2).
(1)在平面直角坐标系中画出△ABC;
(2)若将(1)中的△ABC平移,使点B的对应点B′坐标为(6,2),画出平移后的△A′B′C′;
(3)求△A′B′C′的面积.
二十一、解答题
21.已知:a是的小数部分,b是的小数部分.
(1)求a、b的值;
(2)求4a+4b+5的平方根.
二十二、解答题
22.如图,用两个边长为15的小正方形拼成一个大的正方形,
(1)求大正方形的边长?
(2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2?
二十三、解答题
23.已知:直线AB∥CD,直线MN分别交AB、CD于点E、F,作射线EG平分∠BEF交CD于G,过点F作FH⊥MN交EG于H.
(1)当点H在线段EG上时,如图1
①当∠BEG=时,则∠HFG= .
②猜想并证明:∠BEG与∠HFG之间的数量关系.
(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG与∠HFG之间的数量关系.
二十四、解答题
24.如图1,,E是、之间的一点.
(1)判定,与之间的数量关系,并证明你的结论;
(2)如图2,若、的两条平分线交于点F.直接写出与之间的数量关系;
(3)将图2中的射线沿翻折交于点G得图3,若的余角等于的补角,求的大小.
二十五、解答题
25.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.
(1)当∠A为70°时,
∵∠ACD-∠ABD=∠______
∴∠ACD-∠ABD=______°
∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线
∴∠A1CD-∠A1BD=(∠ACD-∠ABD)
∴∠A1=______°;
(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、An,请写出∠A与∠An的数量关系______;
(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=______.
(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据“同位角、内错角、同旁内角”的意义进行判断即可.
【详解】
解:∠B与∠2是直线DE和直线BC被直线AB所截得到的内错角,
故选:B.
【点睛】
本题考查“同位角、内错角、同旁内角”的意义,理解和掌握“同位角、内错角、同旁内角”的特征是正确判断的前提.
2.C
【分析】
根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.
【详解】
解:观察图形可知图案C通过平移后可以得到.
故选:C.
【点睛】
本题考查的是
解析:C
【分析】
根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.
【详解】
解:观察图形可知图案C通过平移后可以得到.
故选:C.
【点睛】
本题考查的是平移变换及其基本性质,掌握以上知识是解题的关键.
3.B
【分析】
根据直角坐标系的性质分析,即可得到答案.
【详解】
点位于第二象限
故选:B.
【点睛】
本题考查了直角坐标系的知识;解题的关键是熟练掌握象限、坐标的性质,从而完成求解.
4.B
【分析】
根据命题的定义即表示对一件事情进行判断的语句叫命题,分别对每一项是否是命题进行判断即可.
【详解】
解: ①三角形的内角和等于180°,是三角形内角和定理,是命题;
②对顶角相等,是对顶角的性质,是命题;
③过一点作已知直线的垂线,是作图,不是命题;
④两点确定一条直线,是直线的性质,是命题,
综上所述,属于命题是①②④.
故选:B.
【点睛】
此题考查了命题的定义,解题的关键是能根据命题的定义对每一项进行判断.
5.B
【分析】
作BD∥l1,根据平行线的性质得∠1=∠ABD=40°,∠CBD=∠2,利用角的和差即可求解.
【详解】
解:作BD∥l1,如图所示:
∵BD∥l1,∠1=40°,
∴∠1=∠ABD=40°,
又∵l1∥l2,
∴BD∥l2,
∴∠CBD=∠2,
又∵∠CBA=∠CBD+∠ABD=90°,
∴∠CBD=50°,
∴∠2=50°.
故选:B.
【点睛】
本题考查平行线的性质,角的和差等相关知识,重点掌握平行线的性质,难点是作辅线构建平行线.
6.C
【详解】
解:由题意可知4的算术平方根是2,4的立方根是 <2, 8的算术平方根是, 2<<3,8的立方根是2,
故根据数轴可知,
故选C
7.C
【分析】
如图,分两种情况进行讨论求解即可.
【详解】
解:①如图所示,AC∥BF,AD∥BE,
∴∠A=∠FOD,∠B=∠FOD,
∴∠B=∠A=50°;
②如图所示,AC∥BF,AD∥BE,
∴∠A=∠BOD,∠B+∠BOD=180°,
∴∠B+∠A=180°,
∴∠B=130°,
故选C.
【点睛】
本题主要考查了平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.
8.A
【分析】
根据所给的xk、yk的关系式找到种植点的横坐标和纵坐标的变化规律,然后将2021代入求解即可.
【详解】
解:由题意可知,
,
,
,
,
……
,
将以上等式相加,得:,
当k=20
解析:A
【分析】
根据所给的xk、yk的关系式找到种植点的横坐标和纵坐标的变化规律,然后将2021代入求解即可.
【详解】
解:由题意可知,
,
,
,
,
……
,
将以上等式相加,得:,
当k=2021时,;
,
,
,
,
……
,
将以上等式相加,得:,
当k=2021时,,
∴第2021棵树种植点的坐标为,
故选:A.
【点睛】
本题考查点的坐标规律探究,根据题意,找出点的横坐标和纵坐标的变化规律是解答的关键.
九、填空题
9.4
【分析】
首先根据算术平方根的被开方数≥0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十2|+=0.根据非负数的性质可分别求出a和b的值,即可求出2a+b的值.
【详解】
解:
解析:4
【分析】
首先根据算术平方根的被开方数≥0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十2|+=0.根据非负数的性质可分别求出a和b的值,即可求出2a+b的值.
【详解】
解:由题意可得a≥3,
∴2a-4>0,
已知等式整理得:|b+2|+=0,
∴a=3,b=-2,
∴2a+b=2×3-2=4.
故答案为4.
【点睛】
本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0,熟练掌握非负数的性质是解题的关键.
十、填空题
10.(-2,-1)
【分析】
根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.
【详解】
解:点(-2,1)关于x轴对称的点的坐标是(-2,-1),
故答案为:(-2,-1).
【点睛】
本
解析:(-2,-1)
【分析】
根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.
【详解】
解:点(-2,1)关于x轴对称的点的坐标是(-2,-1),
故答案为:(-2,-1).
【点睛】
本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
十一、填空题
11.【分析】
由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD与∠FAD互余,与∠BFE是对顶角,故可求得∠BFE的度数.
【详解】
∵AE是角平分线,∠BAE=26°,
∴∠FAD=∠B
解析:
【分析】
由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD与∠FAD互余,与∠BFE是对顶角,故可求得∠BFE的度数.
【详解】
∵AE是角平分线,∠BAE=26°,
∴∠FAD=∠BAE=26°,
∵DB是△ABC的高,
∴∠AFD=90°−∠FAD=90°−26°=64°,
∴∠BFE=∠AFD=64°.
故答案为64°.
【点睛】
本题考查了三角形内角和定理,三角形的角平分线、中线和高,熟练掌握三角形内角和定理是解题的关键.
十二、填空题
12.40
【分析】
根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解.
【详解】
解:如图所示
∵a∥b
∴∠1=∠DAE,∠2=∠CAB
∵∠DAC=90°
∴∠D
解析:40
【分析】
根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解.
【详解】
解:如图所示
∵a∥b
∴∠1=∠DAE,∠2=∠CAB
∵∠DAC=90°
∴∠DAE+∠CAB=180°-∠DAC=90°
∴∠1+∠2=90°
∴∠2=90°-∠1=40°
故答案为:40.
【点睛】
本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质.
十三、填空题
13.【分析】
需理清楚折叠后,得到的新的角与原来的角相等,再结合平行线的性质:两直线平行,内错角相等即可求解.
【详解】
,
,
是折痕,折叠后,,
,
,
,
故答案为:.
【点睛】
本题考查了平行
解析:
【分析】
需理清楚折叠后,得到的新的角与原来的角相等,再结合平行线的性质:两直线平行,内错角相等即可求解.
【详解】
,
,
是折痕,折叠后,,
,
,
,
故答案为:.
【点睛】
本题考查了平行线的性质,折叠问题,体现了数学的转化思想,模型思想.
十四、填空题
14.403
【解析】
当k=6时,x6=T(1)+1=1+1=2,
当k=2011时,=T()+1=403.
故答案是:2,403.
【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk的表达
解析:403
【解析】
当k=6时,x6=T(1)+1=1+1=2,
当k=2011时,=T()+1=403.
故答案是:2,403.
【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk的表达式并写出用T表示出的表达式是解题的关键.
十五、填空题
15.或
【分析】
已知,可知AB=8,已知的面积为,即可求出OC长,得到C点坐标.
【详解】
∵
∴AB=8
∵的面积为
∴=16
∴OC=4
∴点的坐标为(0,4)或(0,-4)
故答案为:(0,4)
解析:或
【分析】
已知,可知AB=8,已知的面积为,即可求出OC长,得到C点坐标.
【详解】
∵
∴AB=8
∵的面积为
∴=16
∴OC=4
∴点的坐标为(0,4)或(0,-4)
故答案为:(0,4)或(0,-4)
【点睛】
本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解.
十六、填空题
16.(506,505)
【分析】
经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1
解析:(506,505)
【分析】
经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1,纵坐标依次加﹣1,在第四象限的点的横坐标依次加1,纵坐标依次加﹣1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A2021的坐标.
【详解】
解:根据题意得4的整数倍的各点如A4,A8,A12等点在第二象限,
∵2021÷4=505…1;
∴A2021的坐标在第一象限,
横坐标为|(2021﹣1)÷4+1|=506;纵坐标为505,
∴点A2021的坐标是(506,505).
故答案为:(506,505).
【点睛】
本题考查了学生阅读理解及总结规律的能力,解决本题的关键是找到所求点所在的象限,难点是得到相应的计算规律.
十七、解答题
17.(1)-1;(2)
【分析】
(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可;
(2)求出-3= ,即可得出结果.
【详解】
解:(1)原式=
=
=-1;
(2)∵
∴
即
解析:(1)-1;(2)
【分析】
(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可;
(2)求出-3= ,即可得出结果.
【详解】
解:(1)原式=
=
=-1;
(2)∵
∴
即.
故答案为(1)-1;(2).
【点睛】
本题考查实数的运算及实数的大小比较,熟练掌握平方根和立方根的性质是解题的关键.
十八、解答题
18.(1)或;(2).
【分析】
(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;
(2)先整理变形为(x﹣2)3=8,开立方根得出x﹣2=2,求出即可.
【详解】
解:(1),
,
,
或
解析:(1)或;(2).
【分析】
(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;
(2)先整理变形为(x﹣2)3=8,开立方根得出x﹣2=2,求出即可.
【详解】
解:(1),
,
,
或;
(2),
,
,
,
.
【点睛】
本题是根据平方根和立方根的定义解方程,将方程系数化为1变形为:x2=a(a≥0)或x3=b的形式,再根据定义开平方或开立方,注意开平方时,有两个解.
十九、解答题
19.∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70
【分析】
根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等
解析:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70
【分析】
根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等,两直线平行,得出AB∥DG,然后根据两直线平行,同旁内角互补解答即可.
【详解】
解:∵EF∥AD,
∴∠2=∠3(两直线平行,同位角相等).
又∵∠1=∠2,
∴∠1=∠3,
∴AB∥DG(内错角相等,两直线平行).
∴∠AGD+∠BAC=180°(两直线平行,同旁内角互补).
∵∠AGD=110°,
∴∠BAC=70度.
故答案为:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70.
【点睛】
本题考查了平行线的判定与性质,熟记性质与判定方法,并判断出AB∥DG是解题的关键.
二十、解答题
20.(1)见解析;(2)见解析;(3)10
【分析】
(1)根据点A、B、C的坐标描点,从而可得到△ABC;
(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′
解析:(1)见解析;(2)见解析;(3)10
【分析】
(1)根据点A、B、C的坐标描点,从而可得到△ABC;
(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′B′C′,利用此平移规律写出A′、C′的坐标,然后描点即可得到△A′B′C′;
(3)用一个矩形的面积分别减去三个三角形的面积去计算△A′B′C′的面积.
【详解】
解:(1)如图,△ABC为所作;
(2)如图,△A′B′C′为所作;
(3)△A′B′C′的面积=.
【点睛】
本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
二十一、解答题
21.(1)a=﹣3,b=4﹣;(2)±3.
【分析】
(1)根据3<<4,即可求出a、b的值;
(2)把a,b代入代数式计算求值,再求平方根即可.
【详解】
解:(1)∵3<<4,
∴11<8+<12,
解析:(1)a=﹣3,b=4﹣;(2)±3.
【分析】
(1)根据3<<4,即可求出a、b的值;
(2)把a,b代入代数式计算求值,再求平方根即可.
【详解】
解:(1)∵3<<4,
∴11<8+<12,4<8﹣<5,
∵a是的小数部分,b是的小数部分,
∴a=8+﹣11=﹣3,b=8﹣﹣4=4﹣.
(2),
∴4a+4b+5的平方根为:=±3.
【点睛】
本题考查了无理数的估算,求一个数的平方根等知识,能熟练估算的近似值,进而求出a、b的值是解题关键.
二十二、解答题
22.(1)30;(2)不能.
【解析】
【分析】
(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;
(2)先求出长方形的边长,再判断即可.
【详解】
解:(1)∵大正方形的面积是:
∴大正
解析:(1)30;(2)不能.
【解析】
【分析】
(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;
(2)先求出长方形的边长,再判断即可.
【详解】
解:(1)∵大正方形的面积是:
∴大正方形的边长是: =30;
(2)设长方形纸片的长为4xcm,宽为3xcm,
则4x•3x=720,
解得:x= ,
4x= = >30,
所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2.
故答案为(1)30;(2)不能.
【点睛】
本题考查算术平方根,解题的关键是能根据题意列出算式.
二十三、解答题
23.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部
【分析】
(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.
解析:(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部
【分析】
(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.
(2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可.
【详解】
解:(1)①∵EG平分∠BEF,
∴∠BEG=∠FEG,
∵FH⊥EF,
∴∠EFH=90°,
∵AB∥CD,
∴∠BEF+∠EFG=180°,
∴2∠BEG+90°+∠HFG=180°,
∴2∠BEG+∠HFG=90°,
∵∠BEG=36°,
∴∠HFG=18°.
故答案为:18°.
②结论:2∠BEG+∠HFG=90°.
理由:∵EG平分∠BEF,
∴∠BEG=∠FEG,
∵FH⊥EF,
∴∠EFH=90°,
∵AB∥CD,
∴∠BEF+∠EFG=180°,
∴2∠BEG+90°+∠HFG=180°,
∴2∠BEG+∠HFG=90°.
(2)如图2中,结论:2∠BEG-∠HFG=90°.
理由:∵EG平分∠BEF,
∴∠BEG=∠FEG,
∵FH⊥EF,
∴∠EFH=90°,
∵AB∥CD,
∴∠BEF+∠EFG=180°,
∴2∠BEG+90°-∠HFG=180°,
∴2∠BEG-∠HFG=90°.
【点睛】
本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
二十四、解答题
24.(1),见解析;(2);(3)60°
【分析】
(1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED;
(2)如图2,
解析:(1),见解析;(2);(3)60°
【分析】
(1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED;
(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,根据角平分线的定义得到∠BAF=∠BAE,∠CDF=∠CDE,则∠AFD=(∠BAE+∠CDE),加上(1)的结论得到∠AFD=∠AED;
(3)由(1)的结论得∠AGD=∠BAF+∠CDG,利用折叠性质得∠CDG=4∠CDF,再利用等量代换得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,从而可计算出∠BAE的度数.
【详解】
解:(1)
理由如下:
作,如图1,
,
.
,,
;
(2)如图2,由(1)的结论得,
、的两条平分线交于点F,
,,
,
,
;
(3)由(1)的结论得,
而射线沿翻折交于点G,
,
,
,
,
.
【点睛】
本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
二十五、解答题
25.(1)∠A;70°;35°;
(2)∠A=2n∠An
(3)25°
(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.
【分析】
(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD
解析:(1)∠A;70°;35°;
(2)∠A=2n∠An
(3)25°
(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.
【分析】
(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;
(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律;
(3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,从而得出结论;
(4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.
【详解】
解:(1)当∠A为70°时,
∵∠ACD-∠ABD=∠A,
∴∠ACD-∠ABD=70°,
∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,
∴∠A1CD-∠A1BD=(∠ACD-∠ABD)
∴∠A1=35°;
故答案为:A,70,35;
(2)∵A1B、A1C分别平分∠ABC和∠ACD,
∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,
而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,
∴∠BAC=2∠A1=80°,
∴∠A1=40°,
同理可得∠A1=2∠A2,
即∠BAC=22∠A2=80°,
∴∠A2=20°,
∴∠A=2n∠An,
故答案为:∠A=2∠An.
(3)∵∠ABC+∠DCB=360°-(∠A+∠D),
∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,
∴360°-(α+β)=180°-2∠F,
2∠F=∠A+∠D-180°,
∴∠F=(∠A+∠D)-90°,
∵∠A+∠D=230°,
∴∠F=25°;
故答案为:25°.
(4)①∠Q+∠A1的值为定值正确.
∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线
∴∠A1=∠A1CD-∠A1BD=
∠BAC,
∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,
∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC,
∴∠Q=180°-(∠QEC+∠QCE)=180°-∠BAC,
∴∠Q+∠A1=180°.
【点睛】
本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要.
展开阅读全文