资源描述
人教中学七年级下册数学期末质量监测试卷(含解析)
一、选择题
1.的算术平方根是()
A. B. C. D.
2.下列所示的车标图案,其中可以看作由基本图案经过平移得到的是( )
A. B. C. D.
3.点在平面直角坐标系中所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有( )
A.3个 B.2个 C.1个 D.0个
5.如图,直线,被直线,所截,若,,则的度数是( )
A. B. C. D.
6.下列语句中正确的是( )
A.-9的平方根是-3 B.9的平方根是3 C.9的立方根是 D.9的算术平方根是3
7.已知:如图,AB∥EF,CD⊥EF,∠BAC=30°,则∠ACD=( )
A.100° B.110° C.120° D.130°
8.如图,所有正方形的中心均在坐标原点,且各边与轴或轴平行,从内到外,它们的边长依次2,4,6,8,,…顶点依次用,,,,…表示,则顶点的坐标是( )
A. B. C. D.
九、填空题
9.=___.
十、填空题
10.平面直角坐标系中,点关于轴的对称点是__________.
十一、填空题
11.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为_____.
十二、填空题
12.如图,a∥b,∠1=68°,∠2=42°,则∠3=_____________.
十三、填空题
13.如图,将△ABC沿直线AC翻折得到△ADC,连接BD交AC于点E,AF为△ACD的中线,若BE=2,AE=3,△AFC的面积为2,则CE=_____.
十四、填空题
14.已知有理数,我们把称为的差倒数,如:2的差倒数是,的差倒数是,如果,是的差倒数,是的差倒数,是的差倒数…依此类推,那么的值是______.
十五、填空题
15.若点P(2x,x-3)到两坐标轴的距离之和为5,则x的值为____________.
十六、填空题
16.如图,在平面直角坐标系中,一动点从原点O出发,每次移动1个单位长度,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0)⋯,则P2020的坐标是___.
十七、解答题
17.计算:
(1) (2)
十八、解答题
18.求满足下列各式的未知数.
(1).
(2).
十九、解答题
19.如图,,,求度数.完成说理过程并注明理由.
解:∵,
∴________( )
又∵,
∴,
∴__________( )
∴( )
∵,
∴______度.
二十、解答题
20.如图,在平面直角坐标系中,A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).△ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+2,y0+4),将△ABC作同样的平移得到△A1B1C1.
(1)请画出△A1B1C1并写出点A1,B1,C1的坐标;
(2)求△A1B1C1的面积;
二十一、解答题
21.对于实数a,我们规定:用符号[]表示不大于的最大整数,称[]为a的根整数,例如:[]=3,[]=3.
(1)仿照以上方法计算:[]= ;[]= .
(2)若[]=1,写出满足题意的x的整数值 .
(3)如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次[]=3→[]=1,这时候结果为1.对145连续求根整数, 次之后结果为1.
二十二、解答题
22.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图2的虚线将它剪开后,重新拼成一个大正方形.
(1)基础巩固:拼成的大正方形的面积为______,边长为______;
(2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B与数轴上的重合.以点B为圆心,边为半径画圆弧,交数轴于点E,则点E表示的数是______;
(3)变式拓展:
①如图4,给定的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的正方形吗?若能,请在图中画出示意图;
②请你利用①中图形在数轴上用直尺和圆规表示面积为13的正方形边长所表示的数.
二十三、解答题
23.如图,直线,点是、之间(不在直线,上)的一个动点.
(1)如图1,若与都是锐角,请写出与,之间的数量关系并说明理由;
(2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点, 与交于点,与交于点,点在线段上,连接,有,求的值;
(3)如图3,若点是下方一点,平分, 平分,已知,求的度数.
二十四、解答题
24.如图,AB⊥AK,点A在直线MN上,AB、AK分别与直线EF交于点B、C,∠MAB+∠KCF=90°.
(1)求证:EF∥MN;
(2)如图2,∠NAB与∠ECK的角平分线交于点G,求∠G的度数;
(3)如图3,在∠MAB内作射线AQ,使∠MAQ=2∠QAB,以点C为端点作射线CP,交直线AQ于点T,当∠CTA=60°时,直接写出∠FCP与∠ACP的关系式.
二十五、解答题
25.操作示例:如图1,在△ABC中,AD为BC边上的中线,△ABD的面积记为S1,△ADC的面积记为S2.则S1=S2.
解决问题:在图2中,点D、E分别是边AB、BC的中点,若△BDE的面积为2,则四边形ADEC的面积为 .
拓展延伸:
(1)如图3,在△ABC中,点D在边BC上,且BD=2CD,△ABD的面积记为S1,△ADC的面积记为S2.则S1与S2之间的数量关系为 .
(2)如图4,在△ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若△BOC的面积为3,则四边形ADOE的面积为 .
【参考答案】
一、选择题
1.A
解析:A
【分析】
根据算术平方根的意义求解即可.
【详解】
解:16的算术平方根为4,
故选:A.
【点睛】
本题考查了算术平方根,理解算术平方根的意义是解决问题的关键.
2.C
【分析】
根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.
【详解】
解:根据平移的概念,观察图形可知图案B通过平移后可以得到
解析:C
【分析】
根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.
【详解】
解:根据平移的概念,观察图形可知图案B通过平移后可以得到.
故选C.
【点睛】
本题考查生活中的平移现象,仔细观察各选项图形是解题的关键.
3.B
【分析】
根据坐标的特点即可求解.
【详解】
点在平面直角坐标系中所在的象限是第二象限
故选B.
【点睛】
此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点.
4.A
【分析】
根据垂直的性质、平行公理、垂线段的性质及平行线的性质逐一判断即可得答案.
【详解】
平面内,垂直于同一条直线的两直线平行;故①正确,
经过直线外一点,有且只有一条直线与这条直线平行,故②正确
垂线段最短,故③正确,
两直线平行,同旁内角互补,故④错误,
∴正确命题有①②③,共3个,
故选:A.
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
5.C
【分析】
首先证明a∥b,推出∠4=∠5,求出∠5即可.
【详解】
解:∵∠1=∠2,
∴a∥b,
∴∠4=∠5,
∵∠5=180°﹣∠3=55°,
∴∠4=55°,
故选:C.
【点睛】
本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
6.D
【分析】
根据平方根、立方根、算术平方根的定义逐一进行判断即可.
【详解】
A. 负数没有平方根,故A选项错误;
B. 9的平方根是±3,故B选项错误;
C. 9的立方根是,故C选项错误;
D. 9的算术平方根是3,正确,
故选D.
【点睛】
本题考查了平方根、立方根、算术平方根等知识,熟练掌握相关概念以及求解方法是解题的关键.
7.C
【分析】
如图,过点C作,利用平行线的性质得到,,则易求∠ACD的度数.
【详解】
解:过点C作,则,
,
,
,
,
,
故选:C.
【点睛】
本题考查了平行线的性质.该题通过作辅助线,将转化为(+90°)来求.
8.C
【分析】
根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(−n−1,−n−1),A4n+2(−n−1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,−
解析:C
【分析】
根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(−n−1,−n−1),A4n+2(−n−1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,−n−1)(n为自然数)”,依此即可得出结论.
【详解】
解:观察发现:A1(−1,−1),A2(−1,1),A3(1,1),A4(1,−1),A5(−2,−2),A6(−2,2),A7(2,2),A8(2,−2),A9(−3,−3),…,
∴A4n+1(−n−1,−n−1),A4n+2(−n−1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,−n−1)(n为自然数),
∵2021=505×4+1,
∴A2021(−506,−506)
故选C.
【点睛】
本题考查了规律型:点的坐标,解题的关键是找出变化规律“A4n+1(−n−1,−n−1),A4n+2(−n−1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,−n−1)(n为自然数)”.
九、填空题
9.13
【分析】
根据求解即可.
【详解】
解:,
故答案为:13.
【点睛】
题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.
解析:13
【分析】
根据求解即可.
【详解】
解:,
故答案为:13.
【点睛】
题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.
十、填空题
10.【分析】
根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.
【详解】
解:点关于轴的对称点的坐标是(3,2).
【点睛】
本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特
解析:
【分析】
根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.
【详解】
解:点关于轴的对称点的坐标是(3,2).
【点睛】
本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特征,即关于x轴对称的点的坐标横坐标不变,纵坐标变为相反数;关于y轴对称的点的坐标纵坐标不变,横 坐标变为相反数;
十一、填空题
11.6
【详解】
如图,过点D作DH⊥AC于点H,
又∵AD是△ABC的角平分线,DF⊥AB,垂足为F,
∴DF=DH,∠AFD=∠ADH=∠DHG=90°,
又∵AD=AD,DE=DG,
∴△ADF≌
解析:6
【详解】
如图,过点D作DH⊥AC于点H,
又∵AD是△ABC的角平分线,DF⊥AB,垂足为F,
∴DF=DH,∠AFD=∠ADH=∠DHG=90°,
又∵AD=AD,DE=DG,
∴△ADF≌△ADH,△DEF≌△DGH,
设S△DEF=,则S△AED+=S△ADG-,即38+=50-,解得:=6.
∴△EDF的面积为6.
十二、填空题
12.110°
【分析】
如图,利用平行线的性质,求得∠4=∠5=∠1,计算∠2+∠5,再次利用平行线的性质,得到∠3=∠2+∠5.
【详解】
如图,∵a∥b,
∴∠4=∠1=68°,
∴∠5=∠4=68
解析:110°
【分析】
如图,利用平行线的性质,求得∠4=∠5=∠1,计算∠2+∠5,再次利用平行线的性质,得到∠3=∠2+∠5.
【详解】
如图,∵a∥b,
∴∠4=∠1=68°,
∴∠5=∠4=68°,
∵∠2=42°,
∴∠5+∠2=68°+42°=110°,
∵a∥b,
∴∠3=∠2+∠5,
∴∠3=110°,
故答案为:110°.
【点睛】
本题考查了平行线的性质,对顶角相等,熟练掌握平行线的性质,对顶角相等是解题的关键.
十三、填空题
13.【分析】
根据已知条件以及翻折的性质,先求得S四边形ABCD,根据S四边形ABCD,即可求得,进而求得
【详解】
∵AF为△ACD的中线,△AFC的面积为2,
∴S△ACD=2S△AFC=4,
∵
解析:【分析】
根据已知条件以及翻折的性质,先求得S四边形ABCD,根据S四边形ABCD,即可求得,进而求得
【详解】
∵AF为△ACD的中线,△AFC的面积为2,
∴S△ACD=2S△AFC=4,
∵△ABC沿直线AC翻折得到△ADC,
∴S△ABC=S△ADC,BD⊥AC,BE=ED,
∴S四边形ABCD=8,
∴,
∵BE=2,AE=3,
∴BD=4,
∴AC=4,
∴CE=AC﹣AE=4﹣3=1.
故答案为1.
【点睛】
本题考查了三角形中线的性质,翻折的性质,利用四边形的等面积法求解是解题的关键.
十四、填空题
14..
【分析】
根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.
【详解】
∵,
∴,,,,
……
∴,每三个数一个循环,
∵,
∴,
则
+--3 -3-++
解析:.
【分析】
根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.
【详解】
∵,
∴,,,,
……
∴,每三个数一个循环,
∵,
∴,
则
+--3 -3-++3
=-3-++3
.
故答案为:.
【点晴】
本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值.
十五、填空题
15.或
【详解】
【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.
【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=,
当0≤x<3时,2x≥0,x-3
解析:或
【详解】
【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.
【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=,
当0≤x<3时,2x≥0,x-3<0,由题意则有2x-(x-3)=5,解得:x=2,
当x≥3时,2x>0,x-3≥0,由题意则有2x+x-3=5,解得:x=<3(不合题意,舍去),
综上,x的值为2或,
故答案为2或.
【点睛】本题考查了坐标与图形的性质,根据x的取值范围分情况进行讨论是解题的关键.
十六、填空题
16.(673,-1)
【分析】
先根据P6(2,0),P12(4,0),即可得到P6n(2n,0),P6n+4(2n+1,-1),再根据P6×336(2×336,0),可得P2016(672,0),进而
解析:(673,-1)
【分析】
先根据P6(2,0),P12(4,0),即可得到P6n(2n,0),P6n+4(2n+1,-1),再根据P6×336(2×336,0),可得P2016(672,0),进而得到P2020(673,-1).
【详解】
解:由图可得,P6(2,0),P12(4,0),…,P6n(2n,0),P6n+4(2n+1,-1),
∵2016÷6=336,
∴P6×336(2×336,0),即P2016(672,0),
∴P2020(673,-1).
故答案为:(673,-1).
【点睛】
本题主要考查了点的坐标变化规律,解决问题的关键是根据图形的变化规律得到P6n(2n,0).
十七、解答题
17.(1)1.2;(2)
【解析】试题分析:(1)、根据算术平方根、立方根以及-1的奇数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据算术平方根、立方根以及绝对值的计算法则得出各式的值,
解析:(1)1.2;(2)
【解析】试题分析:(1)、根据算术平方根、立方根以及-1的奇数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据算术平方根、立方根以及绝对值的计算法则得出各式的值,然后进行求和得出答案.
试题解析:(1)原式
(2)原式
十八、解答题
18.(1)或;(2)
【分析】
(1)根据平方根的定义直接开平方求解即可;
(2)先两边同时除以,再根据立方根的定义直接开立方即可求解.
【详解】
解:(1),
即或,
解得或.
(2),
,
解得.
解析:(1)或;(2)
【分析】
(1)根据平方根的定义直接开平方求解即可;
(2)先两边同时除以,再根据立方根的定义直接开立方即可求解.
【详解】
解:(1),
即或,
解得或.
(2),
,
解得.
【点睛】
本题主要考查平方根和立方根的应用,解决本题的关键是要熟练掌握平方根和立方根的定义.
十九、解答题
19.∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70
【分析】
根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等
解析:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70
【分析】
根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等,两直线平行,得出AB∥DG,然后根据两直线平行,同旁内角互补解答即可.
【详解】
解:∵EF∥AD,
∴∠2=∠3(两直线平行,同位角相等).
又∵∠1=∠2,
∴∠1=∠3,
∴AB∥DG(内错角相等,两直线平行).
∴∠AGD+∠BAC=180°(两直线平行,同旁内角互补).
∵∠AGD=110°,
∴∠BAC=70度.
故答案为:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70.
【点睛】
本题考查了平行线的判定与性质,熟记性质与判定方法,并判断出AB∥DG是解题的关键.
二十、解答题
20.(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2)
【分析】
(1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标.
(2)利用分割法求解即可.
【详解】
解:(1
解析:(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2)
【分析】
(1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标.
(2)利用分割法求解即可.
【详解】
解:(1)如图,A1B1C1并写即为所求作,A1(1,2),B1(0,0),C1(-2,3).
(2)△A1B1C1的面积=3×3-×3×2-×1×2-×1×3=.
【点睛】
本题考查作图-平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
二十一、解答题
21.(1)4;4;(2)1,2,3;(3)3
【解析】
【分析】
根据题中的新定义计算即可求出值.
【详解】
解:(1)仿照以上方法计算:[16]=4;[24]=4;
(2)若[x]=1,写出满足题意的
解析:(1)4;4;(2)1,2,3;(3)3
【解析】
【分析】
根据题中的新定义计算即可求出值.
【详解】
解:(1)仿照以上方法计算:;
(2)若[]=1,写出满足题意的x的整数值1,2,3;
(3)对145连续求根整数,第1次之后结果为12,第2次之后结果为3,第3次之后结果为1.
故答案为:(1)4;4;(2)1,2,3;(3)3
【点睛】
考查了估算无理数的大小,以及实数的运算,弄清题中的新定义是解本题的关键.
二十二、解答题
22.(1)10,;(2);(3)见解析;(4)见解析
【分析】
(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;
(2)根据大正方形的边长结合实
解析:(1)10,;(2);(3)见解析;(4)见解析
【分析】
(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;
(2)根据大正方形的边长结合实数与数轴的关系可得结果;
(3)以2×3的长方形的对角线为边长即可画出图形;
(4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形.
【详解】
解:(1)∵图1中有10个小正方形,
∴面积为10,边长AD为;
(2)∵BC=,点B表示的数为-1,
∴BE=,
∴点E表示的数为;
(3)①如图所示:
②∵正方形面积为13,
∴边长为,
如图,点E表示面积为13的正方形边长.
【点睛】
本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键.
二十三、解答题
23.(1)见解析;(2);(3)75°
【分析】
(1)根据平行线的性质、余角和补角的性质即可求解.
(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.
(3)根据平行线的性质和角平分线的定义以
解析:(1)见解析;(2);(3)75°
【分析】
(1)根据平行线的性质、余角和补角的性质即可求解.
(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.
(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可.
【详解】
解:(1)∠C=∠1+∠2,
证明:过C作l∥MN,如下图所示,
∵l∥MN,
∴∠4=∠2(两直线平行,内错角相等),
∵l∥MN,PQ∥MN,
∴l∥PQ,
∴∠3=∠1(两直线平行,内错角相等),
∴∠3+∠4=∠1+∠2,
∴∠C=∠1+∠2;
(2)∵∠BDF=∠GDF,
∵∠BDF=∠PDC,
∴∠GDF=∠PDC,
∵∠PDC+∠CDG+∠GDF=180°,
∴∠CDG+2∠PDC=180°,
∴∠PDC=90°-∠CDG,
由(1)可得,∠PDC+∠CEM=∠C=90°,
∴∠AEN=∠CEM,
∴,
(3)设BD交MN于J.
∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,
∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,
∵PQ∥MN,
∴∠BJA=∠PBD=50°,
∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,
由(1)可得,∠ACB=∠PBC+∠CAM,
∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.
【点睛】
本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系.
二十四、解答题
24.(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.
【分析】
(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠K
解析:(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.
【分析】
(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠KCF,从而判断两直线平行;
(2)设∠KAN=∠KCF=α,过点G作GH∥EF,结合角平分线的定义和平行线的判定及性质求解;
(3)分CP交射线AQ及射线AQ的反向延长线两种情况结合角的和差关系分类讨论求解.
【详解】
解:(1)∵AB⊥AK
∴∠BAC=90°
∴∠MAB+∠KAN=90°
∵∠MAB+∠KCF=90°
∴∠KAN=∠KCF
∴EF∥MN
(2)设∠KAN=∠KCF=α
则∠BAN=∠BAC+∠KAN=90°+α
∠KCB=180°-∠KCF=180°-α
∵AG平分∠NAB,CG平分∠ECK
∴∠GAN=∠BAN=45°+α,∠KCG=∠KCB=90°-α
∴∠FCG=∠KCG+∠KCF=90°+α
过点G作GH∥EF
∴∠HGC=∠FCG=90°+α
又∵MN∥EF
∴MN∥GH
∴∠HGA=∠GAN=45°+α
∴∠CGA=∠HGC-∠HGA=(90°+α)-(45°+α)=45°
(3)①当CP交射线AQ于点T
∵
∴
又∵
∴
由(1)可得:EF∥MN
∴
∵
∴
∵,
∴
∴
即∠FCP+2∠ACP=180°
②当CP交射线AQ的反向延长线于点T,延长BA交CP于点G
,由EF∥MN得
∴
又∵,,
∴
∵,
∴
∴
∴
由①可得
∴
∴
综上,∠FCP=2∠ACP或∠FCP+2∠ACP=180°.
【点睛】
本题考查平行线的判定和性质以及角的和差关系,准确理解题意,正确推理计算是解题关键.
二十五、解答题
25.解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5
【解析】
试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;
拓展延伸:(1)
解析:解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5
【解析】
试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;
拓展延伸:(1)作△ABD的中线AE,则有BE=ED=DC,从而得到△ABE的面积=△AED的面积=△ADC的面积,由此即可得到结论;
(2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,△EOC的面积=△BOC的面积的一半, △AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论.
试题解析:解:解决问题
连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE =2,∴S△ADE =2,∴S△ABE=S△AEC=4,∴四边形ADEC的面积=2+4=6.
拓展延伸:
解:(1)作△ABD的中线AE,则有BE=ED=DC,∴△ABE的面积=△AED的面积=△ADC的面积= S2,∴S1=2S2.
(2)连接AO.∵CO=DO,∴△BOD的面积=△BOC的面积=3,△AOC的面积=△AOD的面积.∵BO=2EO,∴△EOC的面积=△BOC的面积的一半=1.5, △AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四边形ADOE的面积为=a+b=6+4.5=10.5.
展开阅读全文