资源描述
人教版七年级数学下册期末质量检测试卷(含答案)
一、选择题
1.一个有理数的平方等于,则这个数是()
A. B.或
C. D.
2.把“笑脸”进行平移,能得到的图形是( )
A. B. C. D.
3.在平面直角坐标系中,点P(5,﹣1)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列四个命题:①的平方根是;②是5的算术平方根;③经过一点有且只有一条直线与这条直线平行;④两条直线被第三条直线所截,同旁内角互补.其中真命题有( )
A.0个 B.1个 C.2个 D.3个
5.如图,,将一个含角的直角三角尺按如图所示的方式放置,若的度数为,则的度数为( )
A. B. C. D.
6.下列计算正确的是( )
A. B. C. D.
7.如图,,平分,,则( )
A.112° B.126° C.136° D.146°
8.如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点;第二分钟,它从点运动到点,而后它接着按图中箭头所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2021分钟时,这个粒子所在位置的坐标是( )
A. B. C. D.
九、填空题
9.的算术平方根是__________.
十、填空题
10.小明从镜子里看到对面电子钟的像如图所示,那么实际时间是_______.
十一、填空题
11.如图,已知在四边形ABCD中,∠A=α,∠C=β,BF,DP为四边形ABCD的∠ABC、∠ADC相邻外角的角平分线.当α、β满足条件____________时,BF∥DP.
十二、填空题
12.将直角三角板与两边平行的纸条如图放置,若,则__________.
十三、填空题
13.如图所示是一张长方形形状的纸条,,则的度数为__________.
十四、填空题
14.下列命题中,属于真命题的有______(填序号):①互补的角是邻补角;②无理数是无限不循环小数;③同位角相等;④两条平行线的同旁内角的角平分线互相垂直;⑤如果,那么.
十五、填空题
15.如果点P(x,y)的坐标满足x+y=xy,那么称点P为“美丽点”,若某个“美丽点”P到y轴的距离为2,则点P的坐标为___.
十六、填空题
16.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位;其行走路线如图所示.则点的坐标为__________.
十七、解答题
17.(1)计算:;
(2)解方程组:.
十八、解答题
18.求下列各式中的值
(1)
(2)
十九、解答题
19.请补全推理依据:如图,已知:,,求证:.
证明:
∵(已知)
∴( )
∴( )
又∵(已知)
∴( )
∴( )
∴( )
二十、解答题
20.如图,,,.将 向右平移 个单位长度,然后再向上平移 个单位长度,可以得到 .
(1)画出平移后的 , 的顶点 的坐标为 ;顶点 的坐标为 .
(2)求 的面积.
(3)已知点 在 轴上,以 ,, 为顶点的三角形面积为 ,则 点的坐标为 .
二十一、解答题
21.已知=0,求实数a、b的值并求出的整数部分和小数部分.
二十二、解答题
22.如图用两个边长为cm的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为,且面积为cm2?请说明理由.
二十三、解答题
23.如图,已知直线,点在直线上,点在直线上,点在点的右侧,平分平分,直线交于点.
(1)若时,则___________;
(2)试求出的度数(用含的代数式表示);
(3)将线段向右平行移动,其他条件不变,请画出相应图形,并直接写出的度数.(用含的代数式表示)
二十四、解答题
24.如图,直线,一副三角板(,,)按如图①放置,其中点在直线上,点均在直线上,且平分.
(1)求的度数.
(2)如图②,若将三角形绕点以每秒的速度按逆时针方向旋转(的对应点分别为).设旋转时间为秒.
①在旋转过程中,若边,求的值;
②若在三角形绕点旋转的同时,三角形绕点以每秒的速度按顺时针方向旋转(的对应点分别为).请直接写出当边时的值.
二十五、解答题
25.如图所示,已知射线.点E、F在射线CB上,且满足,OE平分
(1)求的度数;
(2)若平行移动AB,那么的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;
(3)在平行移动AB的过程中,是否存在某种情况,使?若存在,求出其度数.若不存在,请说明理由.
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据一个数a,如果,那么a就叫做b的平方根求解即可.
【详解】
解:∵,
∴36的平方根为6或-6,
故选B.
【点睛】
本题主要考查了平方根,解题的关键在于能够熟练掌握平方根的定义.
2.D
【分析】
根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.
【详解】
解:观察图形可知图形进行平移,能得到图形D.
故选:D.
【点睛】
本题考查了图形的平移,图形的平移只改
解析:D
【分析】
根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.
【详解】
解:观察图形可知图形进行平移,能得到图形D.
故选:D.
【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.
3.D
【分析】
根据点的横纵坐标的符号可得所在象限.
【详解】
解:∵点P的横坐标是正数,纵坐标是负数,
∴点P(5,-1)在第四象限,
故选:D.
【点睛】
本题主要考查点的坐标,熟练掌握各象限内点的坐标的特点是解本题的关键,第一、二、三、四象限内的点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-).
4.B
【分析】
根据算术平方根的概念、平方根的概念、平行公理、平行线的性质判断即可.
【详解】
解:①,3的平方根是,故原命题错误,是假命题,不符合题意;
②是5的算术平方根,正确,是真命题,符合题意;
③经过直线外一点,有且只有一条直线与这条直线平行,故原命题错误,是假命题,不符合题意;
④两条平行直线被第三条直线所截,同旁内角互补,故原命题错误,是假命题,不符合题意.
真命题只有②,
故选:B.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
5.A
【分析】
过三角板60°角的顶点作直线EF∥AB,则EF∥CD,利用平行线的性质,得到∠3+∠4=∠1+∠2=60°,代入计算即可.
【详解】
如图,过三角板60°角的顶点作直线EF∥AB,
∵AB∥CD,
∴EF∥CD,
∴∠3=∠1,∠4=∠2,
∵∠3+∠4=60°,
∴∠1+∠2=60°,
∵∠1=25°,
∴∠2=35°,
故选A.
【点睛】
本题考查了平行线的辅助线构造,平行线的判定与性质,三角板的意义,熟练掌握平行线的判定与性质是解题的关键.
6.D
【分析】
根据算术平方根、立方根、二次根式的乘法逐项判断即可得.
【详解】
A、,此项错误;
B、,此项错误;
C、,此项错误;
D、,此项正确;
故选:D.
【点睛】
本题考查了算术平方根、立方根、二次根式的乘法,熟练掌握算术平方根与立方根是解题关键.
7.D
【分析】
利用平行线的性质及角平分线的定义求解即可;
【详解】
解:∵,,
∴,
∵平分,
∴,
∵,
∴,
故选:D.
【点睛】
本题考查了平行线的性质,角平分线的定义;熟练掌握平行线的性质,并能进行推理计算是解决问题的关键.
8.B
【分析】
找出粒子运动规律和坐标之间的关系即可解题.
【详解】
解:由题知(0,0)表示粒子运动了0分钟,
(1,1)表示粒子运动了2=1×2分钟,将向左运动,
(2,2)表示粒子运动了6=2×
解析:B
【分析】
找出粒子运动规律和坐标之间的关系即可解题.
【详解】
解:由题知(0,0)表示粒子运动了0分钟,
(1,1)表示粒子运动了2=1×2分钟,将向左运动,
(2,2)表示粒子运动了6=2×3分钟,将向下运动,
(3,3)表示粒子运动了12=3×4分钟,将向左运动,
...
于是会出现:
(44,44)点粒子运动了44×45=1980分钟,此时粒子将会向下运动,
∴在第2021分钟时,粒子又向下移动了2021−1980=41个单位长度,
∴粒子的位置为(44,3),
故选:B.
【点睛】
本题考查的是动点坐标问题,解题的关键是找出粒子的运动规律.
九、填空题
9.【分析】
直接利用算术平方根的定义得出答案.
【详解】
解:,
的算术平方根是:.
故答案为:.
【点睛】
此题主要考查了算术平方根,正确掌握相关定义是解题关键.
解析:
【分析】
直接利用算术平方根的定义得出答案.
【详解】
解:,
的算术平方根是:.
故答案为:.
【点睛】
此题主要考查了算术平方根,正确掌握相关定义是解题关键.
十、填空题
10.21:05.
【分析】
利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.
【详解】
解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所
解析:21:05.
【分析】
利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.
【详解】
解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所以此时实际时刻为21:05.
故答案为21:05
【点睛】
本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.
十一、填空题
11.α=β
【详解】
试题解析:
当BF∥DP时,
即:
整理得:
故答案为
解析:α=β
【详解】
试题解析:
当BF∥DP时,
即:
整理得:
故答案为
十二、填空题
12.36
【分析】
先根据平角的定义求出的度数,再根据平行线的性质即可得求解.
【详解】
∵,
∴,
∵,
故答案为:.
【点睛】
本题考查了平角的定义、平行线的性质,掌握平行线的性质是解题关键.
解析:36
【分析】
先根据平角的定义求出的度数,再根据平行线的性质即可得求解.
【详解】
∵,
∴,
∵,
故答案为:.
【点睛】
本题考查了平角的定义、平行线的性质,掌握平行线的性质是解题关键.
十三、填空题
13.5°
【分析】
根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可.
【详解】
解:∵AB∥CD,
∴∠1+∠3=180°,
∵∠1=105°,
∴∠3=
解析:5°
【分析】
根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可.
【详解】
解:∵AB∥CD,
∴∠1+∠3=180°,
∵∠1=105°,
∴∠3=180°-105°=75°,
∴∠2=(180°-75°)÷2=52.5°,
故答案为:52.5°.
【点睛】
此题主要考查了平行线的性质,关键是找准折叠后哪些角是对应相等的.
十四、填空题
14.②④⑤
【分析】
根据邻补角、无理数、平行线的性质和平方根进行判断即可.
【详解】
解:①邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题;
②无理数是无限不循环小数,正确,是真命题;
③
解析:②④⑤
【分析】
根据邻补角、无理数、平行线的性质和平方根进行判断即可.
【详解】
解:①邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题;
②无理数是无限不循环小数,正确,是真命题;
③两直线平行,同位角相等,故错误,是假命题;
④如图所示,直线a,b被直线c所截,且a//b,直线AB平分∠CAE,直线CD平分∠ACF,AB,CD相交于点G.求证:AB⊥CD.
证明:∵a//b,
∴∠CAE+∠ACF=180°.
又AB平分∠CAE,CD平分∠ACF,
所以∠1=∠CAE,∠2=∠ACF.
所以∠1+∠2=∠CAE+∠ACF
=(∠CAE+∠ACF)=×180°=90°.
又∵△ACG的内角和为180°,
∴∠AGC=180°-(∠1+∠2)=180°-90°=90°,
∴AB⊥CD.
∴两条平行线的同旁内角的角平分线互相垂直,正确,是真命题;
⑤如果,那么,正确,是真命题.
故答案为:②④⑤.
【点睛】
此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义、性质定理及判定定理.
十五、填空题
15.(2,2),(-2,)
【分析】
直接利用某个“美丽点”到y轴的距离为2,得出x的值,进而求出y的值求出答案.
【详解】
解:∵某个“美丽点”到y轴的距离为2,
∴x=±2,
∵x+y=xy,
∴当
解析:(2,2),(-2,)
【分析】
直接利用某个“美丽点”到y轴的距离为2,得出x的值,进而求出y的值求出答案.
【详解】
解:∵某个“美丽点”到y轴的距离为2,
∴x=±2,
∵x+y=xy,
∴当x=2时,
则y+2=2y,
解得:y=2,
∴点P的坐标为(2,2),
当x=-2时,
则y-2=-2y,
解得:y=,
∴点P的坐标为(-2,),
综上所述:点P的坐标为(2,2)或(-2,).
故答案为:(2,2)或(-2,).
【点睛】
此题主要考查了点的坐标,正确分类讨论是解题关键.
十六、填空题
16.(1010,1)
【分析】
根据图象先计算出A4和A8的坐标,进而得出点A4n的坐标为(2n,0),再用2020÷4=505,可得出点A2021的坐标.
【详解】
解:由图可知A4,A8都在x轴上,
解析:(1010,1)
【分析】
根据图象先计算出A4和A8的坐标,进而得出点A4n的坐标为(2n,0),再用2020÷4=505,可得出点A2021的坐标.
【详解】
解:由图可知A4,A8都在x轴上,
∵蚂蚁每次移动1个单位,
∴OA4=2,OA8=4,
∴A4(2,0),A8(4,0),
∴OA4n=4n÷2=2n,
∴点A4n的坐标为(2n,0).
∵2020÷4=505,
∴点A2020的坐标是(1010,0).
∴点A2021的坐标是(1010,1).
故答案为:(1010,1).
【点睛】
本题考查了规律型问题在点的坐标问题中的应用,数形结合并正确得出规律是解题的关键.
十七、解答题
17.(1);(2).
【解析】
【分析】
(1)原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果;
(2)先把方程组中的分式方程化为不含分母的方程,再用加减消元法求出方程组的解即可;
【
解析:(1);(2).
【解析】
【分析】
(1)原式利用绝对值的代数意义,算术平方根及立方根定义计算即可得到结果;
(2)先把方程组中的分式方程化为不含分母的方程,再用加减消元法求出方程组的解即可;
【详解】
(1)解:原式=;
(2)原方程组可化为:
,
(1)×2−(2)得:−7y=−7,
解得:y=1;
把y=1代入(1)得:x−3×1=−2,
解得:x=1,
故方程组的解为: ;
【点睛】
本题考查了实数的运算以及解二元一次方程组,熟知掌握实数运算法则及解一元二次方程的加减消元法和代入消元法是解答此题的关键.
十八、解答题
18.(1);(2)
【分析】
(1)先移项,再根据平方根的性质开平方即可得;
(2)方程变形后,再根据立方根的性质开立方可得关于x的方程,解之可得.
【详解】
解:(1)
∴
即
(2)
解得,
解析:(1);(2)
【分析】
(1)先移项,再根据平方根的性质开平方即可得;
(2)方程变形后,再根据立方根的性质开立方可得关于x的方程,解之可得.
【详解】
解:(1)
∴
即
(2)
解得,
【点睛】
本题考查了立方根,平方根,解题的关键是熟练掌握平方根与立方根的性质.
十九、解答题
19.同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等
【分析】
根据平行线的判定定理以及性质定理证明即可.
【详解】
证明:∵∠1+∠2=180
解析:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等
【分析】
根据平行线的判定定理以及性质定理证明即可.
【详解】
证明:∵∠1+∠2=180°(已知),
∴AD∥EF(同旁内角互补,两直线平行),
∴∠3=∠D(两直线平行,同位角相等),
又∵∠3=∠A(已知),
∴∠D=∠A(等量代换),,
∴AB∥CD(内错角相等,两直线平行),
∴∠B=∠C(两直线平行,内错角相等).
故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等.
【点睛】
本题主要考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解本题的关键.
二十、解答题
20.(1)见解析,,;(2)5;(3) 或
【分析】
(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;
(2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可;
(3)设P点
解析:(1)见解析,,;(2)5;(3) 或
【分析】
(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;
(2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可;
(3)设P点得坐标为 ,因为以 ,,P为顶点得三角形得面积为 ,
所以 ,求解即可.
【详解】
解:(1) 如图, 为所作.
(0,3),(4,0);
(2) 计算 的面积 .
(3)设P点得坐标为(t,0),
因为以 ,, 为顶点得三角形得面积为 ,
所以 ,解得 或 ,
即 点坐标为 (3,0) 或(5,0).
【点睛】
本题主要考查了坐标与图形,平移作图,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.
二十一、解答题
21.4,
【分析】
根据分母不等于0,以及非负数的性质列式求出a、b的值,再根据根据被开方数估算无理数的大小即可得解.
【详解】
解:根据题意得,3a-b=0,a2-49=0且a+7>0,
解得a=7,
解析:4,
【分析】
根据分母不等于0,以及非负数的性质列式求出a、b的值,再根据根据被开方数估算无理数的大小即可得解.
【详解】
解:根据题意得,3a-b=0,a2-49=0且a+7>0,
解得a=7,b=21,
∵16<21<25,
∴的整数部分是4,小数部分是.
【点睛】
本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.
二十二、解答题
22.不能截得长宽之比为,且面积为cm2的长方形纸片,见解析
【分析】
根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.
【详解】
解:不能,
因为大正方形纸
解析:不能截得长宽之比为,且面积为cm2的长方形纸片,见解析
【分析】
根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.
【详解】
解:不能,
因为大正方形纸片的面积为()2+()2=36(cm2),
所以大正方形的边长为6cm,
设截出的长方形的长为3b cm,宽为2b cm,
则6b2=30,
所以b=(取正值),
所以3b=3=>,
所以不能截得长宽之比为3:2,且面积为30cm2的长方形纸片.
【点睛】
本题考查了算术平方根,理解算术平方根的意义是正确解答的关键.
二十三、解答题
23.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°
【分析】
(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;
(2)同(1)中方法求解
解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°
【分析】
(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;
(2)同(1)中方法求解即可;
(3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EF∥AB,由角平分线的定义,平行线的性质,以及角的和差计算即可.
【详解】
解:(1)当n=20时,∠ABC=40°,
过E作EF∥AB,则EF∥CD,
∴∠BEF=∠ABE,∠DEF=∠CDE,
∵BE平分∠ABC,DE平分∠ADC,
∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,
∴∠BED=∠BEF+∠DEF=60°;
(2)同(1)可知:
∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,
∴∠BED=∠BEF+∠DEF=n°+40°;
(3)当点B在点A左侧时,由(2)可知:∠BED=n°+40°;
当点B在点A右侧时,
如图所示,过点E作EF∥AB,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,
∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,
∵AB∥CD∥EF,
∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,
∴∠BED=∠BEF-∠DEF=n°-40°;
如图所示,过点E作EF∥AB,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,
∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,
∵AB∥CD∥EF,
∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,
∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;
如图所示,过点E作EF∥AB,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,
∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°,
∵AB∥CD∥EF,
∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,
∴∠BED=∠BEF-∠DEF=n°-40°;
综上所述,∠BED的度数为n°+40°或n°-40°或220°-n°.
【点睛】
此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键.
二十四、解答题
24.(1)60°;(2)①6s;②s或s
【分析】
(1)利用平行线的性质角平分线的定义即可解决问题.
(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.
②分两种情形:如图③中,当
解析:(1)60°;(2)①6s;②s或s
【分析】
(1)利用平行线的性质角平分线的定义即可解决问题.
(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.
②分两种情形:如图③中,当BG∥HK时,延长KH交MN于R.根据∠GBN=∠KRN构建方程即可解决问题.如图③-1中,当BG∥HK时,延长HK交MN于R.根据∠GBN+∠KRM=180°构建方程即可解决问题.
【详解】
解:(1)如图①中,
∵∠ACB=30°,
∴∠ACN=180°-∠ACB=150°,
∵CE平分∠ACN,
∴∠ECN=∠ACN=75°,
∵PQ∥MN,
∴∠QEC+∠ECN=180°,
∴∠QEC=180°-75°=105°,
∴∠DEQ=∠QEC-∠CED=105°-45°=60°.
(2)①如图②中,
∵BG∥CD,
∴∠GBC=∠DCN,
∵∠DCN=∠ECN-∠ECD=75°-45°=30°,
∴∠GBC=30°,
∴5t=30,
∴t=6s.
∴在旋转过程中,若边BG∥CD,t的值为6s.
②如图③中,当BG∥HK时,延长KH交MN于R.
∵BG∥KR,
∴∠GBN=∠KRN,
∵∠QEK=60°+4t,∠K=∠QEK+∠KRN,
∴∠KRN=90°-(60°+4t)=30°-4t,
∴5t=30°-4t,
∴t=s.
如图③-1中,当BG∥HK时,延长HK交MN于R.
∵BG∥KR,
∴∠GBN+∠KRM=180°,
∵∠QEK=60°+4t,∠EKR=∠PEK+∠KRM,
∴∠KRM=90°-(180°-60°-4t)=4t-30°,
∴5t+4t-30°=180°,
∴t=s.
综上所述,满足条件的t的值为s或s.
【点睛】
本题考查几何变换综合题,考查了平行线的性质,旋转变换,角平分线的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.
二十五、解答题
25.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°.
【分析】
(1)根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,从而得出答案;
(2
解析:(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°.
【分析】
(1)根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,从而得出答案;
(2)根据平行线的性质,即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根据∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值为1:2.
(3)设∠AOB=x,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC,然后利用三角形的内角和等于180°列式表示出∠OBA,然后列出方程求解即可.
【详解】
(1)∵CB∥OA
∴∠C+∠COA=180°
∵∠C=100°
∴∠COA=180°-∠C=80°
∵∠FOB=∠AOB,OE平分∠COF
∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=40°;
∴∠EOB=40°;
(2)∠OBC:∠OFC的值不发生变化
∵CB∥OA
∴∠OBC=∠BOA,∠OFC=∠FOA
∵∠FOB=∠AOB
∴∠FOA=2∠BOA
∴∠OFC=2∠OBC
∴∠OBC:∠OFC=1:2
(3)当平行移动AB至∠OBA=60°时,∠OEC=∠OBA.
设∠AOB=x,
∵CB∥AO,
∴∠CBO=∠AOB=x,
∵CB∥OA,AB∥OC,
∴∠OAB+∠ABC=180°,∠C+∠ABC=180°
∴∠OAB=∠C=100°.
∵∠OEC=∠CBO+∠EOB=x+40°,
∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,
∴x+40°=80°-x,
∴x=20°,
∴∠OEC=∠OBA=80°-20°=60°.
【点睛】
本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.
展开阅读全文