1、人教版中学七7年级下册数学期末质量检测(及解析)一、选择题1如图所示,下列四个选项中不正确的是( )A与是同旁内角B与是内错角C与是对顶角D与是邻补角2下列图案可以由部分图案平移得到的是( )ABCD3点在平面直角坐标系中所在的象限是( )A第一象限B第二象限C第三象限D第四象限4下列命题是假命题的是( )A对顶角相等B两直线平行,同旁内角相等C过直线外一点有且只有一条直线与已知直线平行D同位角相等,两直线平行5已知,如图,点D是射线上一动点,连接,过点D作交直线于点E,若,则的度数为( )ABC或D或6若一个正数的两个平方根分别是2m+6和m18,则5m+7的立方根是( )A9B3C2D97
2、如图:ABCD,OE平分BOC,OFOE,OPCD,ABO40,则下列结论:OF平分BOD;POEBOF;BOE70;POB2DOF,其中结论正确的序号是( )ABCD8如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,均在格点上,其顺序按图中“”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,1),P5(1,1),P6(1,2)根据这个规律,点P2021的坐标为()A(505,505)B(505,506)C(506,506)D(505,505)九、填空题9已知8,则x的值是_十、填空题10在平面直角坐标系中,点与点关于轴对称,则的值是_十
3、一、填空题11如图,ABC中BAC60,将ACD沿AD折叠,使得点C落在AB上的点C处,连接CD与CC,ACB的角平分线交AD于点E;如果BCDC;那么下列结论:12;AD垂直平分CC;B3BCC;DCEC;其中正确的是:_;(只填写序号)十二、填空题12如图,AD/BC,则_度十三、填空题13如图,在ABC中,ACB=90,AB,点D为AB边上一点且不与A、B重合,将ACD沿CD翻折得到ECD,直线CE与直线AB相交于点F若A=,当DEF为等腰三角形时,ACD=_(用的代数式表示ACD)十四、填空题14规定:x表示不大于x的最大整数,(x)表示不小于x的最小整数,x)表示最接近x的整数(xn
4、+0.5,n为整数),例如:2.3=2,(2.3)=3,2.3)=2当1x1时,化简x+(x)+x)的结果是_十五、填空题15如果点P(m+3,m2)在x轴上,那么m_十六、填空题16如图:在平面直角坐标系中,已知P1(1,0),P2(1,1),P3(1,1),P4(1,1),P5(2,1),P6(2,2),依次扩展下去,则点P2021的坐标为 _十七、解答题17(1)计算:(2)计算:(3)已知,求的值.十八、解答题18求下列各式中的值(1)(2)十九、解答题19学习如何书写规范的证明过程,补充完整,并完成后面问题已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DEBA
5、,AFDE求证:FDAC证明:DEBA(已知) BFD ( )又 AFDE (等量代换)FDCA( )模仿上面的证明过程,用另一种方法证明FDAC二十、解答题20将ABO向右平移4个单位,再向下平移1个单位,得到三角形ABO(1)请画出平移后的三角形ABO(2)写出点A、O的坐标二十一、解答题21阅读下面文字,然后回答问题给出定义:一个实数的整数部分是不大于这个数的最大数,这个实数的小数部分为这个数与它的整数部分的差的绝对值例如:2.4的整数部分为2,小数部分为;的整数部分为1,小数部分可用表示;再如,2.6的整数部分为3,小数部分为由此我们得到一个真命题:如果,其中是整数,且,那么,(1)如
6、果,其中是整数,且,那么_,_;(2)如果,其中是整数,且,那么_,_;(3)已知,其中是整数,且,求的值;(4)在上述条件下,求的立方根二十二、解答题22如图,8块相同的小长方形地砖拼成一个大长方形,(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?二十三、解答题23如图,已知直线射线,是射线上一动点,过点作交射线于点,连接作,交直线于点,平分(1)若点,都在点的右侧求的度数;若,求的度数(不能使用“三角形的内角和是”直接解题)
7、(2)在点的运动过程中,是否存在这样的偕形,使?若存在,直接写出的度数;若不存在请说明理由二十四、解答题24为了安全起见在某段铁路两旁安置了两座可旋转探照灯如图1所示,灯射线从开始顺时针旋转至便立即回转,灯射线从开始顺时针旋转至便立即回转,两灯不停交又照射巡视若灯转动的速度是每秒2度,灯转动的速度是每秒1度假定主道路是平行的,即,且(1)填空:_;(2)若灯射线先转动30秒,灯射线才开始转动,在灯射线到达之前,灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯射线到达之前若射出的光束交于点,过作交于点,且,则在转动过程中,请探究与的数量关系是否发生变化?若不变,请求出其数量关系
8、;若改变,请说明理由二十五、解答题25阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120,40,20,这个三角形就是一个“梦想三角形”反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍(1)如果一个“梦想三角形”有一个角为108,那么这个“梦想三角形”的最小内角的度数为_(2)如图1,已知MON60,在射线OM上取一点A,过点A作ABOM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O、B重合),若ACB=80判定
9、AOB、AOC是否是“梦想三角形”,为什么?(3)如图2,点D在ABC的边上,连接DC,作ADC的平分线交AC于点E,在DC上取一点F,使得EFC+BDC180,DEFB若BCD是“梦想三角形”,求B的度数【参考答案】一、选择题1B解析:B【分析】根据同旁内角,内错角,对顶角,邻补角的定义逐项分析【详解】A. 与是同旁内角,故该选项正确,不符合题意; B. 与不是内错角,故该选项不正确,符合题意;C. 与是对顶角,故该选项正确,不符合题意; D. 与是邻补角,故该选项正确,不符合题意;故选B【点睛】本题考查了同旁内角,内错角,对顶角,邻补角的定义,理解定义是解题的关键两条直线被第三条直线所截,
10、如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的两侧,那么这两个角叫做内错角两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的同旁,那么这两个角叫做同旁内角两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角2C【分析】根据平移的定义,逐一判断即可【详解】解:、是旋转变换,不是平移,选项错误,不符合题意;、轴对称变换,不是平移,选项错误,不符合题意;、是平移,选项正确,符合题意;、图形的大解析:C【分析】根据平移的定义,逐一判断即可【详解】解:、
11、是旋转变换,不是平移,选项错误,不符合题意;、轴对称变换,不是平移,选项错误,不符合题意;、是平移,选项正确,符合题意;、图形的大小发生了变化,不是平移,选项错误,不符合题意故选:C【点睛】本题考查平移变换,解题的关键是判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变3B【分析】根据坐标的特点即可求解【详解】点在平面直角坐标系中所在的象限是第二象限故选B【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点4B【分析】真命题就是正确的命题,条件和结果相矛盾的命题是假命题【详解】解:A. 对顶角相等是真命题,故A不符合题意;B. 两直线平行,同旁
12、内角互补,故B是假命题,符合题意;C. 过直线外一点有且只有一条直线与已知直线平行,是真命题,故C不符合题意;D. 同位角相等,两直线平行,是真命题,故D不符合题意,故选:B【点睛】本题考查真假命题,是基础考点,掌握相关知识是解题关键5D【分析】分点D在线段AB上及点D在线段AB的延长线上两种情况考虑:当点D在线段AB上时,由DEBC可得出ADE的度数,结合ADC=ADE+CDE可求出ADC的度数;当点D在线段AB的延长线上时,由DEBC可得出ADE的度数,结合ADC=ADE-CDE可求出ADC的度数综上,此题得解【详解】解:当点D在线段AB上时,如图1所示DEBC,ADE=ABC=84,AD
13、C=ADE+CDE=84+20=104;当点D在线段AB的延长线上时,如图2所示DEBC,ADE=ABC=84,ADC=ADE-CDE=84-20=64综上所述:ADC=104或64故选:D【点睛】本题考查了平行线的性质,分点D在线段AB上及点D在线段AB的延长线上两种情况,求出ADC的度数是解题的关键6B【分析】根据立方根与平方根的定义即可求出答案【详解】解:由题意可知:2m+6+m180,m4,5m+727,27的立方根是3,故选:B【点睛】考核知识点:平方根、立方根理解平方根、立方根的定义和性质是关键7A【分析】根据ABCD可得BOD=ABO=40,利用平角得到COB=140,再根据角平
14、分线的定义得到BOE=70,则正确;利用OPCD,ABCD,ABO=40,可得POB=50,BOF=20,FOD=20,进而可得OF平分BOD,则正确;由EOB=70,POB=50,POE=20,由BOF=POF-POB=20,进而可得POE=BOF,则正确;由可知POB=50,FOD=20,则不正确【详解】ABCD,BOD=ABO=40,COB=180-40=140,又OE平分BOC,BOE=COB=140=70,故正确;OPCD,POD=90,又ABCD,BPO=90,又ABO=40,POB=90-40=50,BOF=POF-POB=70-50=20,FOD=40-20=20,OF平分BO
15、D,故正确;EOB=70,POB=90-40=50,POE=70-50=20,又BOF=POF-POB=70-50=20,POE=BOF,故正确;由可知POB=90-40=50,FOD=40-20=20,故POB2DOF,故不正确故结论正确的是,故选A【点睛】本题考查了平行线的性质,解题的关键是要注意将垂直、平行、角平分线的定义结合应用,弄清图中线段和角的关系,再进行解答8A【分析】先分别求出点的坐标,再归纳类推出一般规律即可得【详解】解:由题意得:点的坐标为,即,点的坐标为,即,点的坐标为,即,归纳类推得:点的坐标为,其中为正整数,点的坐标为,解析:A【分析】先分别求出点的坐标,再归纳类推出
16、一般规律即可得【详解】解:由题意得:点的坐标为,即,点的坐标为,即,点的坐标为,即,归纳类推得:点的坐标为,其中为正整数,点的坐标为,故选:A【点睛】本题考查了点坐标的规律探索,正确归纳类推出一般规律是解题关键九、填空题965【解析】【分析】根据算术平方根的定义确定x-1的值,解方程即可.【详解】8x-1=64x=65故答案为65【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是关键解析:65【解析】【分析】根据算术平方根的定义确定x-1的值,解方程即可.【详解】8x-1=64x=65故答案为65【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是关键.十、填空题104【分析】根
17、据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.【详解】点与点关于轴对称,则a+b的值是:,故答案为【点睛】本题考查了关于x轴对称的解析:4【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.【详解】点与点关于轴对称,则a+b的值是:,故答案为【点睛】本题考查了关于x轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.十一、填空题11【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,ACD沿AD折叠,使得点C落在AB上的点C处,1=2,A=AC,DC解
18、析:【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,ACD沿AD折叠,使得点C落在AB上的点C处,1=2,A=AC,DC=D,AD垂直平分CC;,都正确;BD, DC=D,BD= DC,3=B,4=5,3=4+5=25即B2BC;错误;根据折叠的性质,得ACD=AD=B+3=23,ACB的角平分线交AD于点E,2(6+5)=2B, D EC正确;故答案为:.【点睛】本题考查了折叠的性质,平行线的判定,外角的性质,线段垂直平分线的性质,熟练掌握各种基本性质是解题的关键.十二、填空题1252【分析】根据AD/BC,可知,根据三角形内角和定理以及
19、求得,结合题意,即可求得【详解】,故答案为:52【点睛】本题考查了平行线的性质,三角形内角和定理,解析:52【分析】根据AD/BC,可知,根据三角形内角和定理以及求得,结合题意,即可求得【详解】,故答案为:52【点睛】本题考查了平行线的性质,三角形内角和定理,角度的计算,掌握以上知识是解题的关键十三、填空题13或或【分析】若为等腰三角形,则,根据三角形外角的性质以及三角形内角和定理即可求得结果【详解】解:由翻折的性质可知,如图1,当时,则,当时,为等腰三角形,故答案解析:或或【分析】若为等腰三角形,则,根据三角形外角的性质以及三角形内角和定理即可求得结果【详解】解:由翻折的性质可知,如图1,当
20、时,则,当时,为等腰三角形,故答案为当时,;,;,如图2,当时,;,;当或或时,为等腰三角形,故答案为:或或【点睛】本题考查翻折变换、等腰三角形的性质、三角形外角的性质以及三角形内角和定理等知识,解题的关键是熟练掌握三角形外角的性质以及三角形内角和定理十四、填空题142或1或0或1或2【分析】有三种情况:当时,x-1,(x)0,x)=-1或0,x+(x)+x)-2或-1;当时,x0,(x)0,x)=0,x解析:2或1或0或1或2【分析】有三种情况:当时,x-1,(x)0,x)=-1或0,x+(x)+x)-2或-1;当时,x0,(x)0,x)=0,x+(x)+x)0;当时,x0,(x)1,x)=
21、0或1,x+(x)+x)1或2;综上所述,化简x+(x)+x)的结果是-2或1或0或1或2.故答案为-2或1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.【详解】请在此输入详解!十五、填空题15【分析】根据x轴上的点的纵坐标等于0列式计算即可得解【详解】点P(m+3,m2)在x轴上,m20,解得m2故答案为:2【点睛】此题考查点的坐标,熟记x轴上的点的纵解析:【分析】根据x轴上的点的纵坐标等于0列式计算即可得解【详解】点P(m+3,m2)在x轴上,m20,解得m2故答案为:2【点睛】此题考查点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键十六、填空题16(50
22、6,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且解析:(506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标20204,再根据第二项象限点的规律即可得出结论【详解】解:P1(1,0),P2(1,1),P3(1,1),P4(1,1),P5(2,1),P6(2,2),下标为4的倍数的点在第一象限,被4除余1的点在第二象限
23、,被4除余2的点在第三象限,被4除余3的点在第四象限,202145051,点P2021在第二象限,点P5(2,1),点P9(3,2),点P13(4,3),点P2021(506,505),故答案为:(506,505)【点睛】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标十七、解答题17(1)2;(2)6;(3) 或【解析】【分析】(1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果;(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;解析:(1)2;(2)6;
24、(3) 或【解析】【分析】(1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果;(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;(3)直接利用平方根的定义计算得出答案【详解】解:(1),;(2),;(3)解得:或故答案为:(1)2;(2)6;(3) 或【点睛】本题考查立方根以及平方根,实数的运算,熟练掌握运算法则是解题的关键十八、解答题18(1);(2)【分析】(1)根据平方根的性质,直接开方,即可解答;(2)根据立方根,直接开立方,即可解答【详解】解:(1),(2)【点睛】本题考查平方根、立方根,解析:(1);(2)【分析】(1)根据平方根的性质,直接
25、开方,即可解答;(2)根据立方根,直接开立方,即可解答【详解】解:(1),(2)【点睛】本题考查平方根、立方根,解决本题的关键是熟记平方根、立方根的相关性质十九、解答题19(1)FDE,两直线平行,内错角相等; A,BFD, 同位角相等,两直线平行;(2)证明见解析【分析】(1)根据两直线平行内错角相等和同位角相等两直线平行求解即可;(2)根据两直线平行解析:(1)FDE,两直线平行,内错角相等; A,BFD, 同位角相等,两直线平行;(2)证明见解析【分析】(1)根据两直线平行内错角相等和同位角相等两直线平行求解即可;(2)根据两直线平行同位角相等和内错角相等两直线平行求解即可【详解】(1)
26、证明:DEBA(已知) BFDFDE(两直线平行,内错角相等)又 AFDEABFD,(等量代换)FDCA(同位角相等,两直线平行)故答案为:FDE,两直线平行,内错角相等; A,BFD, 同位角相等,两直线平行 (2)证明:DEBA(已知),ADEC(两直线平行,同位角相等),又 AFDE(已知),FDEDEC(等量代换),FDCA;(内错角相等,两直线平行)【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解二十、解答题20(1)见解析;(2)A,O【分析】(1)分别作出A,B,O的对应点A,B,O即可(2)根据点的位置写出坐标即可【详解】解:(1)如图,AB
27、O即为所求作(2)A(解析:(1)见解析;(2)A,O【分析】(1)分别作出A,B,O的对应点A,B,O即可(2)根据点的位置写出坐标即可【详解】解:(1)如图,ABO即为所求作(2)A(2,1),O(4,1)【点睛】本题考查作图平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型二十一、解答题21(1)2,;(2)3,;(3);(4)3【分析】(1)先估算的大小,再依据定义分别取整数部分和小数部分即可;(2)先估算的大小,再依据定义分别取整数部分和小数部分即可;(3)先估算的大小,解析:(1)2,;(2)3,;(3);(4)3【分析】(1)先估算的大小,再依据定义分别取整数部分和小数部分
28、即可;(2)先估算的大小,再依据定义分别取整数部分和小数部分即可;(3)先估算的大小,分别求得的值,再代入绝对值中计算即可;(4)根据前三问的结果,代入代数式求值,最后求立方根即可【详解】(1),故答案为:2,,;(2),故答案为:3,;(3),;(4),27的立方根为3,即的立方根为3【点睛】本题考查了实数的运算,无理数的估算,绝对值计算,立方根,理解题意是解题的关键二十二、解答题22(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:解析:(1) 长是1.5
29、m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:,解得:,长是1.5m,宽是0.5m.(2)正方形的面积为7平方米,正方形的边长是米,3,他不能剪出符合要求的桌布.【点睛】本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.二十三、解答题23(1)35;(2)55;(2)存在,或【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;
30、依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=20解析:(1)35;(2)55;(2)存在,或【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=20,再根据PQCE,即可得出CPQ=ECP=60;(2)设EGC=3x,EFC=2x,则GCF=3x-2x=x,分两种情况讨论:当点G、F在点E的右侧时,当点G、F在点E的左侧时,依据等量关系列方程求解即可【详解】解:(1)ABCD,CEB+ECQ=180,CEB=110,ECQ=70,PCF=PCQ,CG平分ECF,PCGPCF+FCGQCF+FCEEC
31、Q35;ABCD,QCG=EGC,QCG+ECG=ECQ=70,EGC+ECG=70,又EGC-ECG=30,EGC=50,ECG=20,ECG=GCF=20,PCFPCQ(7040)15,PQCE,CPQ=ECP=ECQ-PCQ=70-15=55(2)52.5或7.5,设EGC=3x,EFC=2x,当点G、F在点E的右侧时,ABCD,QCG=EGC=3x,QCF=EFC=2x,则GCF=QCG-QCF=3x-2x=x,PCFPCQFCQEFCx,则ECG=GCF=PCF=PCD=x,ECD=70,4x=70,解得x=17.5,CPQ=3x=52.5;当点G、F在点E的左侧时,反向延长CD到H
32、,EGC=3x,EFC=2x,GCH=EGC=3x,FCH=EFC=2x,ECG=GCF=GCH-FCH=x,CGF=180-3x,GCQ=70+x,180-3x=70+x,解得x=27.5,FCQ=ECF+ECQ=27.52+70=125,PCQFCQ62.5,CPQ=ECP=62.5-55=7.5,【点睛】本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键二十四、解答题24(1)72;(2)30秒或110秒;(3)不变,BAC=2BCD【分析】(1)根据BAM+BAN=180,BAM:BAN=3:2,即可得到BAN的度数;(2)设A灯转动t秒,解析
33、:(1)72;(2)30秒或110秒;(3)不变,BAC=2BCD【分析】(1)根据BAM+BAN=180,BAM:BAN=3:2,即可得到BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0t90时,根据2t=1(30+t),可得 t=30;当90t150时,根据1(30+t)+(2t-180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据BAC=2t-108,BCD=126-BCA=t-54,即可得出BAC:BCD=2:1,据此可得BAC和BCD关系不会变化【详解】解:(1)BAM+BAN=180,BAM:BAN=3:2,BAN=180=72,故
34、答案为:72;(2)设A灯转动t秒,两灯的光束互相平行,当0t90时,如图1,PQMN,PBD=BDA,ACBD,CAM=BDA,CAM=PBD2t=1(30+t),解得 t=30;当90t150时,如图2,PQMN,PBD+BDA=180,ACBD,CAN=BDAPBD+CAN=1801(30+t)+(2t-180)=180,解得 t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)BAC和BCD关系不会变化理由:设灯A射线转动时间为t秒,CAN=180-2t,BAC=72-(180-2t)=2t-108,又ABC=108-t,BCA=180-ABC-BAC=180-t
35、,而ACD=126,BCD=126-BCA=126-(180-t)=t-54,BAC:BCD=2:1,即BAC=2BCD,BAC和BCD关系不会变化【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补二十五、解答题25(1)36或18;(2)AOB、AOC都是“梦想三角形”,证明详见解析;(3)B36或B【分析】(1)根据三角形内角和等于180,如果一个“梦想三角形”有一个角为108,解析:(1)36或18;(2)AOB、AOC都是“梦想三角形”,证明详见解析;(3)B36或B【分析】(1)
36、根据三角形内角和等于180,如果一个“梦想三角形”有一个角为108,可得另两个角的和为72,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180108108336,72(13)18,由此比较得出答案即可;(2)根据垂直的定义、三角形内角和定理求出ABO、OAC的度数,根据“梦想三角形”的定义判断即可;(3)根据同角的补角相等得到EFCADC,根据平行线的性质得到DEFADE,推出DEBC,得到CDEBCD,根据角平分线的定义得到ADECDE,求得BBCD,根据“梦想三角形”的定义求解即可【详解】解:当108的角是另一个内角的3倍时,最小角为180108108336,当180108
37、72的角是另一个内角的3倍时,最小角为72(13)18,因此,这个“梦想三角形”的最小内角的度数为36或18故答案为:18或36(2)AOB、AOC都是“梦想三角形” 证明:ABOM,OAB90,ABO90MON30,OAB3ABO,AOB为“梦想三角形”, MON60,ACB80,ACBOACMON,OAC806020,AOB3OAC,AOC是“梦想三角形” (3)解:EFCBDC180,ADCBDC180,EFCADC,ADEF, DEFADE,DEFB,BADE,DEBC, CDEBCD,AE平分ADC,ADECDE,BBCD,BCD是“梦想三角形”,BDC3B,或B3BDC, BDCBCDB180,B36或B【点睛】本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键