资源描述
人教版五年级上册数学应用题附答案
1.大米、面粉和食用油的单价如下表。(“■”代表0~9其中的1个数字)
物品
大米
面粉
食用油
单价
6.■8元/kg
8.2■元/kg
47.50元/瓶
(1)张奶奶买10kg大米和5kg面粉。带100元够吗?为什么?
(2)李叔叔买了2瓶食用油,付给售货员100元,应找回多少钱?
2.某地区居民原来用水为3元/吨,从5月1日起对居民用水实施“三级水价”计量的“阶梯水价”。具体办法如下表:王奶奶家5月份用水15吨,需要交水费多少元?
阶梯计量
第一级
第二级
第三级
用水量
0~12吨
12吨以上至16吨
16吨以上
水价(元/吨)
3.00
4.50
7.50
3.有一条长35米,宽24米的花坛,如果在这个花坛的四周修2.5米宽的小路(如图,单位:米)小路的面积是多少平方米?
4.某出租车公司的出租车收费标准如下表。
里程
收费
3千米以内(含3千米)
6.00元
3千米以上,每1千米
2.80元
芳芳乘出租车去距离她家7千米的外婆家,应付多少车费?
5.近日,全国多地蔬菜价格上涨。大葱每千克15.6元,黄瓜每千克19.4元,大葱和黄瓜各买2千克,一共多少钱?
6.包子铺的早餐有三文治、包子、奶茶、煎鸡蛋和粥等。
(1)妈妈买了2个三文治和4个煎鸡蛋,共需要多少钱?
(2)请你为自己选一份健康、科学的早餐,并计算一共需要多少钱。
先在下面编一道题目:
再在下面解答:
7.某市自来水公司为鼓励节约用水,采取按月分段计费的方式收取水费。12吨以内的每吨2.5元;超过12吨的部分,每吨3.8元。
(1)小云家上个月的用水量为11吨,应缴水费多少元?
(2)小可家上个月的用水量为18吨,应缴水费多少元?
8.张老师从九龙鼎坐出租车到龙门游玩,到达龙门时显示里程数为13.9千米。他所乘坐的出租车2千米以内收费6元,超过2千米,每千米收费1.5元,不足1千米的按1千米算,张老师需付多少钱?
9.王阿姨去超市购物。她买了2箱牛奶,每箱38.5元。还买了1.5kg肉,每千克32.8元。王阿姨一共花了多少钱?
10.
(1)普通冰箱一天的电费是多少?
(2)节能冰箱一天的电费是多少?
11.王阿姨想给长方形客厅重新铺正方形地砖,客厅尺寸如下。现在要选用如下图中的地砖铺面,且不切割,正好用整块数。选用哪种规格的地砖比较合适?一共需要多少块?
12.学校组织师生为贫困山区的学生捐书。一班同学捐的故事书和科技书一共有180本,故事书是科技书的3倍,科技书有多少本?
13.校园里种植了杨树和柳树,它们相差90棵,杨树的棵数是柳树的4倍。柳树有多少棵?(用方程解)
14.猎豹是世界上跑得最快的动物,速度能达到每小时110千米,比大象速度的2倍还多30千米。大象每小时能跑多少千米?
小军是这样解答的:
(110+30)÷2
=140÷2
=70(千米)
答:大象每小时能跑70千米。
小军的结果正确吗?请你用学过的知识验证这个结果。
15.甲、乙两个水池中原来共存水60吨。甲池放水1小时用去了5吨,乙池进水1小时增加了7吨,现在甲池中的水比乙池少4吨。
(1)现在两个水池中共存水多少吨?
(2)原来乙池中存水多少吨?
16.张大叔养白兔和黑兔,白兔的只数是黑兔的3倍。______________,白兔和黑兔各有多少只?
(选择一个你喜欢的条件,将序号填在横线上,再解答)
A.白兔和黑兔一共180只
B.白兔比黑免多180只
17.山南中央公园占地约75公顷,其中水域面积大约是景观绿化面积的1.5倍。中央公园的水域面积和景观绿化面积大约各是多少公顷?(列方程解答)
18.有甲乙两辆汽车同时从相距525km的两个城市相对开出。甲车的速度是乙车的1.5倍,经过5时相遇。甲乙两车每时分别行多少km?(用方程解答)
19.某小学的学生在公司里铺草坪,五年级学生铺了164平方米,比四年级铺的3倍多8平方米,四年级铺草坪多少平方米?
20.两列火车从相距540km的两地同时相向开出,经过2.7小时相遇。甲车每小时行105km,乙车每小时行多少千米?(先写出等量关系式,再列方程解答)
21.一节1号电池多少元?
22.甲、乙两车分别从相距300千米的A、B两地同时出发相向而行,已知甲车每小时行40千米,乙车每小时行35千米。填空并回答问题:
(1)相遇时,两车行了( )小时。
(2)相遇时,甲车行了( )千米。
(3)相遇后两车立即返回各自的出发地,这时甲车把速度提高到原来的,乙车速度不变。当甲车返回到A地时,乙车还需多少小时才能到达B地?(写出必要的计算过程)
23.某工程队修一条水渠,原计划每天修0.45千米,32天修完,后因增加了机械设备,每天修水渠0.6千米。实际用多少天可以修完这条水渠?
24.为弘扬尊老、爱老、敬老、助老的传统美德,志愿者张叔叔骑自行车,李叔叔骑摩托车从相距112千米的两地同时出发,相向而行。李叔叔骑摩托车每小时行54千米,若他们经过1.6小时在敬老院相遇,张叔叔骑自行车每小时行多少千米?
25.为了鼓励节约用电,某市实行“阶梯电价”,收费标准如表所示:
月用电量(千瓦时)
100及以下
100~220
220及以上
每千瓦时电费(元)
0.42
0.60
0.85
小明家十月份共付电费70.8元,他们家十月用电多少千瓦时?
26.红卫村要修一条长2.64千米的村级公路,甲乙两个修路队同时从公路两端往中间施工,8天刚好修完,甲队每天修0.15千米。乙队每天修多少千米?
27.聪聪的爷爷买了一箱苹果和一把香蕉,共花了189.3元。这把香蕉重多少千克?
28.近年来,柳州螺蛳粉远销海外,实现了地方小吃向国际产业的转变。
(1)某厂家有3条自动化螺蛳粉生产线,4小时能生产米粉9.6吨。照这样计算,一条自动化螺蛳粉生产线每小时能生产米粉多少吨?
(2)小莉要给在重庆的表哥寄一箱3.3kg螺蛳粉。某快递公司寄到重庆的快递收费标准如下,请算一算小莉要付多少快递费?
收费标准:1kg以内6元;超过1kg的部分,每千克2.5元(不足1kg按1kg计算)。
29.9米彩带可以包扎5个礼盒,一根32.5米长的彩带最多可以包扎几个礼盒?
30.请问:今年大头儿子几岁?(用方程解答)
31.五(1)班图书角故事书的本数是科技书的3倍,故事书比科技书多48本,故事书和科技书分别有多少本?(列方程解答)
32.如图,已知平行四边形的一条底和两条高的长,如果用铁丝围成这样一个平行四边形至少要用多长的铁丝?
33.有一块梯形田,面积是。已知它的上底长,下底长,如果从上底向下底挖一条水渠,这条水渠最短是多少米?
34.两个正方形相拼,求阴影部分的面积.
35.一个直角梯形,上底是24cm,如果上底增加16cm,下底不变,这个直角梯形就变成一个正方形.求原来梯形的面积.
36.靠墙边有一个花坛(如图),围花坛的篱笆正好长100米,求这个花坛的面积.
37.如下图所示,梯形ABCD的面积是60平方米,高是8米,三角形ADE的面积是5平方米,BC=10米,求阴影部分的面积。
38.一块梯形地上底长220米,下底长340米,高是57.5米,共收油籽3542千克.平均每公顷产油籽多少千克?
39.如图,靠墙边围一个花坛,围花坛的篱笆长46m。求这个花坛的面积。
40.如图,三角形ABC和三角形DEF是两个完全相同的直角三角形,把它们的一部分叠放在一起,求阴影部分的面积。
41.上个月小红爸爸的工资比妈妈的工资多2800元,爸爸的工资是妈妈的1.5倍,上个月爸爸、妈妈的工资各是多少元?(先画线段图,再列方程解答)
画线段图:
42.甲、乙两班各有一个图书室,共有296本书。已知甲班图书的和乙班图书的合在一起是95本,那么甲班图书有多少本?
43.动物园里的猴子比野山羊多42只,猴子的只数是野山羊的4倍。猴子和野山羊各有多少只?(先写出题中的等量关系,再列方程解答)
等量关系:________________________
解答:________________________
44.小敏和小刚都是集邮爱好者。小敏现在的邮票张数是小刚邮票张数的,如果小刚给小敏9张邮票,那么他们两人的邮票张数就相等,你知道小刚有多少张邮票吗?(用方程解答)
45.卡车运了多少吨?
46.甲、乙两个水池中原来共存水60吨。甲池放水1小时用去了5吨,乙池进水1小时增加了7吨,现在甲池中的水比乙池少4吨。
(1)现在两个水池中共存水多少吨?
(2)原来乙池中存水多少吨?
47.甲乙两辆汽车同时从相距720千米的两地相对开出,经过4小时两车相遇,已知甲车速度是乙车速度的1.25倍,求甲、乙两车的速度分别是每小时行多少千米?(用方程解答)
48.电脑小组男生人数是女生人数的3倍,后来有8名男生转到科技小组,这时电脑小组男、女生人数一样多。原来电脑小组男、女生各有多少人?(列方程解答)
49.实验小学四、五年级喜欢足球的学生数共360人,五年级喜欢足球的学生数是四年级喜欢足球的学生数的4倍多15人,两个年级喜欢足球的学生各多少人?(用方程解答)
50.如图,ABCD是平行四边形,BC=8cm,EC=6cm,阴影部分面积比△EFG的面积大12cm2,求FC的长。
51.一条路的一侧原有木电线杆51根(两端都有),每相邻两根之间相隔12米,现在要全部换成水泥电线杆。如果每相邻两根水泥电线杆的间隔是20米(两端都有),需要多少根水泥电线杆?
52.一套《百科知识》售价23.8元,共4本。聪聪攒够钱去书店买书,碰上促销减价活动,节省的钱刚好可以再买一本单价3.2元的笔记本。这套丛书现在每本多少钱?
53.受国际油价下降影响,国内汽油零售价下调。92号汽油原价6.80元/升,现在每升下调了0.34元,王叔叔加了48升92号汽油,少花了多少元?
54.邮局邮寄外埠信函的收费标准是:100 g以内的,每20 g(不足20 g,按20 g计算)收费1.20元;100 g以上的,每增加100 g(不足100 g,按100 g计算)加收2.00元.芳芳给外埠的阿姨寄一封298 g的信函,应付多少钱的邮费?
55.某超市举办“买四送一”促销活动,每盒牛奶2.8元,小华要买20盒,一共需要多少钱?
56.王阿姨家2020年8月份用电量为210度,根据下面的资料计算王阿姨家8月份应缴电费多少钱?
按省物价局印发的《河北省居民生活用电试行阶梯电价实施方案》的通知要求,阶梯电价自2012年7月1日执行。
第一档:居民户月用电量在180度及以内,维持现行电价水平。其中:不满1千伏用户电价每度0.52元(居民用户电压一般为220伏)。
第二档:居民户月用电量在181度~280度,在第一档电价基础上每度提高0.05元。
第三档:居民户月用电量在281度及以上,在第一档电价基础上每度提高0.30元。
57.家乐园超市搞活动,小明的妈妈给了他100元钱,让他去买洗衣液,要求正好花完100元钱,可以有几种买法?各买多少瓶?(用列表法解答)
58.某市为鼓励居民节约用电,规定收费标准如下:每户每月用电量1~240千瓦时,每千瓦时0.49元;超过240千瓦时、不超过400千瓦时的部分,每千瓦时0.53元;超过400千瓦时的部分,每千瓦时0.79元。
(1)小明家上月用电量为250千瓦时,电费是多少?
(2)小丽家上月用电量为420千瓦时,电费是多少?
59.某市为鼓励市民节约用水,规定水费收费标准如下:每月用水10吨以内(包括10吨),每吨2.5元;超过10吨的部分,每吨3.5元。小英家上个月用水17吨,应缴费多少元?
60.有一幢12层的大楼,由于停电,电梯停开。王师傅从1层走到3层需要40秒,照这样计算,王师傅从3层走到9层需要多少秒?
61.某市家庭用电收费标准如下:每月用电200千瓦时(含200千瓦时)以内的,每千瓦时收费0.55元;每月超过200千瓦时的部分,每千瓦时收费0.75元。刘老师家12月份家庭用电220千瓦时,应付电费多少元?
62.一条走廊的一边每隔4m摆放一盆植物(两端不放),一共放了9盆,这条走廊有多少米?
63.一个圆形池塘的周长是300米,每隔6米栽种一棵柳树,池塘一周需要栽柳树多少棵?
64.在正方形的操场四周栽树,每隔10米栽一棵(四个角都栽树),如果操场的周长是520米,那么一共能栽( )棵树,每边有( )棵.
65.一座桥长116米,在桥的两侧栏杆上各安装16块花纹图案,图案的长为2米,两头的图案离桥两端都是12米,且每相邻两块图案间的间隔都相等.问:相邻两块图案之间应间隔多少米?
66.将一根4米长的钢筋从一端开始,按每30厘米锯一大段,再按每20厘米锯一小段,这样交替锯下去,每锯一下用30秒,锯完一下休息2分钟。全部锯完需多长时间?
67.某校五年级学生排成一个方阵,最外一层的人数为60,问方阵最外一层每边有多少人? 这个方阵一共有学生多少人?
68.参加阅兵的战土有1200人,平均分成5个方队,队距75米。每个方队6人一排,相邻两排距离0.8米。整个阅兵队伍的长多少米?
69.琳琳准备购买4千克苹果和2千克葡萄。
70.有一根木料长20米,先锯下2.5米长的损坏部分,然后把剩下的木料锯成一样长的木条,又锯了7次,每根短木条长多少米?
【参考答案】
1.(1)不够;见详解
(2)5元
【解析】
(1)从表中可知,大米的单价超过6元,看作6元;面粉的单价超过8元,看作8元;根据单价×数量=总价,分别计算出买10kg大米和5kg面粉的价钱,再相加,就是总价,与带的100元相比较,如果大于或等于100元,就不够,反之就够。
(2)根据单价×数量=总价,求出2瓶食用油的价钱,再用付给售货员的100元减去总去2瓶食用油的价钱,就是应找回的钱数。
(1)6.■8≈6
8.2■≈8
6×10+8×5
=60+40
=100(元)
6.■8×10+8.2■×5>100,不够。
答:不够,把大米的单价看作6元、面粉的单价看作8元,都比实际的单价少,总价正好是100元,那么实际的总价大于100元,所以不够。
(2)47.5×2=95(元)
100-95=5(元)
答:应找回5元。
【点睛】
本题考查小数乘法的计算以及用估算的方法解决实际问题,掌握单价、数量、总价之间的关系是解题的关键。
2.5元
【解析】
王奶奶家用水量到达第二级,根据单价×数量=总价,先求出第一级满用水量的费用,再求出第二级用水量,进而求出第二级用水量费用,相加即可。
12×3+(15-12)×4.5
=36+3×4.5
=36+13.5
=49.5(元)
答:需要交水费49.5元。
【点睛】
关键是理解收费规则,掌握小数乘法的计算方法。
3.320平方米
【解析】
由题意可知,外面的大长方形的长为(35+2.5×2)米,宽为(24+2.5×2)米,小路的面积=大长方形的面积-小长方形的面积,根据长方形的面积公式分别计算大长方形和小长方形的面积,再相减即可得解。
(35+2.5×2)×(24+2.5×2)
=(35+5)×(24+5)
=40×29
=1160(平方米)
35×24=840(平方米)
1160-840=320(平方米)
答:小路的面积是320平方米。
【点睛】
本题考查长方形的面积,明确大长方形的长和宽是解题的关键。
4.2元
【解析】
根据题意,超过3千米的距离为(7-3)千米,乘单价,求出超过3千米部分要付的钱数,再加上3千米收的6元,就是一共应付的车费。
2.8×(7-3)+6
=2.8×4+6
=11.2+6
=17.2(元)
答:应付17.2元车费。
【点睛】
本题考查分段计费问题,弄清每段的临界点和每段的收费标准。
5.70元
【解析】
根据单价×数量=总价,分别求出大葱和黄瓜的总价,然后相加即可。
15.6×2+19.4×2
=31.2+38.8
=70(元)
答:一共70元。
【点睛】
本题考查单价、数量和总价的关系,明确它们的关系是解题的关键。
6.(1)15元;(2)见详解
【解析】
(1)总价=单价×数量,用三文治的价格乘上三文治的数量再加上煎鸡蛋的单价乘煎鸡蛋的数量即可。
(2)选出一份健康、科学的早餐,按照总价=单价×数量计算即可。(答案不唯一)
(1)2×4.5+4×1.5
=9+6
=15(元)
答:妈妈买了2个三文治和4个煎鸡蛋,共需要15元。
(2)早餐买了4个包子和2个煎鸡蛋一共需要多少钱?(问题不唯一)
4×1.2+2×1.5
=4.8+3
=7.8(元)
答:早餐买了4个包子和2个煎鸡蛋一共需要7.8元。
【点睛】
熟练掌握小数乘法的计算是解题的关键。
7.(1)27.5元
(2)52.8元
【解析】
(1)在12吨以内的用水量,用吨数乘每吨水的单价即可;
(2)用12吨用水量乘12吨以内每吨水的单价,计算出12吨以内用水的价钱,超出12吨的用水量,用多出的吨数乘超出12吨后每吨水的单价,得出超出部分的价钱,两部分的费用加起来即可。
(1)11×2.5=27.5(元)
答:应缴水费27.5元。
(2)12×2.5+(18-12)×3.8
=30+6×3.8
=30+22.8
=52.8(元)
答:应缴水费52.8元。
【点睛】
此题的解题关键是采取分段计费的办法,计算出每一段的费用,再加起来即可。
8.24元
【解析】
根据单价×数量=总价求出超出2千米的收费,再加上6元即可解答。
13.9千米≈14千米
(14-2)×1.5+6
=18+6
=24(元)
答:张老师需付24元。
【点睛】
此题考查的是分段计费问题,解答此题关键是明确按照不同的计分标准计算费用。
9.2元
【解析】
用牛奶的箱数乘每箱的单价,可得出买牛奶花的价钱。用每千克肉的单价,乘肉的重量,可得出买肉花的价钱。把买牛奶和买肉的价钱加起来,即可得解。
(元)
答:王阿姨一共花了126.2元。
【点睛】
此题的解题关键是掌握单价、数量和总价三者之间的关系,列出算式,求出结果。
10.(1)0.4元;
(2)0.11元
【解析】
(1)普通冰箱一天的电费=普通冰箱一天的耗电量×电费的单价;
(2)节能冰箱一天的电费=节能冰箱一天的耗电量×电费的单价;据此解答。
(1)0.8×0.5=0.4(元)
答:普通冰箱一天的电费是0.4元。
(2)0.22×0.5=0.11(元)
答:节能冰箱一天的电费是0.11元。
【点睛】
掌握单价、总价、数量之间的关系是解答题目的关键。
11.所以得选用边长是5分米的正方形地砖;96块
【解析】
由题意可知,根据长方形面积=长×宽,正方形的面积=边长×边长,如果长方形的面积能够整除该方砖的面积则选用该规格的地砖比较合适。据此解答即可。
4米=40分米,6米=60分米
40×60÷(8×8)
=2400÷64
=37.5(块)
40×60÷(5×5)
=2400÷25
=96(块)
40×60÷(3×3)
=2400÷9
≈267(块)
答:所以得选用边长是5分米的正方形地砖,一共需要96块。
【点睛】
本题考查长方形和正方形的面积,熟记公式是解题的关键。
12.45本
【解析】
根据题意可得等量关系式:故事书的本数科技书的本数本,设科技书有本,则故事书有本,然后列方程解答即可。
解:设科技书有本,则故事书有本,
答:科技书有45本。
【点睛】
找出故事书和科技书数量和与180本之间的等量关系是解答本题的关键。
13.30棵
【解析】
根据题意,杨树的棵数-柳树的棵数=相差的数量,据此关系式解答。
解:设柳树有x棵。
4x-x=90
3x=90
3x÷3=90÷3
x=30
答:柳树有30棵。
【点睛】
观察题干,分析数量关系,设出未知数列方程解答即可。
14.错误;见详解
【解析】
根据题意,等量关系:大象的速度×2+30=猎豹的速度,据此列出方程,并求解。
解:设大象每小时能跑千米。
2+30=110
2+30-30=110-30
2=80
2÷2=80÷2
=40
答:小军的结果错误,大象每小时能跑40千米。
【点睛】
从题目中找到等量关系,按等量关系列出方程是解题的关键。
15.(1)62吨
(2)26吨
【解析】
(1)由题意可知,甲、乙两个水池中原来共存水60吨。甲池放水1小时用去了5吨,乙池进水1小时增加了7吨,则现在比原来的存水多了7-5=2吨,据此解答即可。
(2)设原来乙池中存水x吨,则原来甲池存水(60-x)吨,根据现在甲池中的水比乙池少4吨,据此列方程解答即可。
(1)60+(7-5)
=60+2
=62(吨)
答:现在两个水池中共存水62吨。
(2)解:设原来乙池中存水x吨,则原来甲池存水(60-x)吨。
x+7-(60-x-5)=4
x+7-(55-x)=4
x+7-55+x=4
2x=52
x=26
答:原来乙池中存水26吨。
【点睛】
本题考查用方程解决实际问题,明确等量关系是解题的关键。
16.A
解析:A;135只;45只
【解析】
横线上填白兔和黑兔一共180只,设黑兔有x只,那么白兔就有3x只,依据白兔只数+黑兔只数=180只列方程即可解答。
解:设黑兔有x只,那么白兔就有3x只,
x+3x=180
4x=180
x=180÷4
x=45
45×3=135(只)
答:白兔有135只,黑兔有45只。
【点睛】
此题的解题关键是弄清题意,把黑兔的只数设为未知数x,找出题中数量间的相等关系,列出包含x的等式,解方程得到最终的结果。
17.45公顷;30公顷
【解析】
根据题意,假设景观绿化面积为x公顷,水域面积大约是景观绿化面积的1.5倍,所以水域面积为1.5x公顷,景观绿化面积+水域面积=中央公园面积,据此列出方程,求解即可。
解:设景观绿化面积为x公顷,水域面积为1.5x公顷,
x+1.5x=75
2.5x=75
x=75÷2.5
x=30
75-30=45(公顷)
答:中央公园的水域面积大约是45公顷,景观绿化面积大约是30公顷。
【点睛】
此题的解题关键是弄清题意,把景观绿化面积设为未知数x,找出题中数量间的相等关系,列出包含x的等式,解方程得到最终的结果。
18.甲车63km;乙车42km
【解析】
设乙车每时行xkm,则甲车每小时行1.5xkm,根据速度和×相遇时间=总路程,列出方程求出x的值是乙车速度,乙车速度×1.5=甲车速度。
解:设乙车每时行xkm。
(1.5x+x)×5=525
2.5x×5=525
12.5x÷12.5=525÷12.5
x=42
42×1.5=63(km)
答:甲车每小时行63km,乙车每小时行42km。
【点睛】
用方程解决问题的关键是找到等量关系。
19.52平方米
【解析】
把四年级铺草坪的面积设为未知数,等量关系式:四年级铺草坪的面积×3+8平方米=五年级铺草坪的面积,据此列方程解答。
解:设四年级铺草坪x平方米。
3x+8=164
3x=164-8
3x=156
x=156÷3
x=52
答:四年级铺草坪52平方米。
【点睛】
分析题意找出等量关系式是解答题目的关键。
20.等量关系式:路程=速度和×相遇时间;95千米
【解析】
相遇时两车所行的路程之和就是两地之间的路程,根据相遇问题的等量关系:路程=速度和×相遇时间,假设乙车每小时行驶x千米,那么两车的速度和是(105+x)千米,根据等量关系式列方程,解方程即可。
等量关系式:路程=速度和×相遇时间。
解:设乙车每小时行驶x千米。
(105+x)×2.7=540
(105+x)×2.7÷2.7=540÷2.7
105+x=200
105+x-105=200-105
x=95
答:乙车每小时行95千米。
【点睛】
本题考查行程问题的解题方法,解题关键是掌握相遇问题的等量关系,利用相遇时间×速度和=路程,列方程解答即可。
21.9元
【解析】
由题意可知,根据总价÷数量=单价,据此解答即可。
5.4÷6=0.9(元)
答:一节1号电池0.9元。
【点睛】
本题考查单价、数量和总价的关系,明确它们的关系是解题的关键。
22.A
解析:(1)4;(2)160;(3)0.8小时
【解析】
(1)先把两车的速度相加,求出速度和,再用总路程除以速度和,就是两车的相遇时间,即两车行驶的时间。
(2)根据速度×时间=路程,用甲车的速度乘4小时即可解答。
(3)根据分数乘法的意义,用甲车的速度乘求出甲车返回的速度,再用甲车行驶的路程除以返回的速度求出返回的时间,再用4小时减去甲车返回的时间(即乙车返回的时间)即可解答。
(1)300÷(35+40)
=300÷75
=4(小时)
(2)40×4=160(千米)
(3)4-160÷(40×)
=4-160÷50
=4-3.2
=0.8(小时)
答:当甲车返回到A地时,乙车还需0.8小时才能到达B地。
【点睛】
本题考查了路程问题的数量关系:速度×时间=路程的灵活运用。
23.24天
【解析】
我们用原计划每天修的千米数乘以天数就是要修的这条水渠的长度,再除以实际每天完成的千米数,就是实际要用的天数。
0.45×32÷0.6
=14.4÷0.6
=24(天)
答:实际用24天可以修完这条水渠。
【点睛】
此题属于工程问题,掌握“工作总量÷工作效率=工作时间”是解题关键。
24.16千米
【解析】
根据路程相遇时间速度之和,再用速度之和减去摩托车的速度,即可求得自行车的速度。
112÷1.6-54
=70-54
=16(千米时)
答:张叔叔骑自行车每小时行16千米。
【点睛】
本题考查相遇问题中的基本数量关系“速度和路程相遇时间”的灵活应用。
25.148千瓦时
【解析】
首先根据“总价=单价×数量”求出第一档的电费,即用0.42×100求出100千瓦时的电费;然后用小明家十月份共付电费减去100千瓦时的电费,求出超过100千瓦时的电费是多少元,这个电费在第二档内收取,根据“数量=总价÷单价”,用第二档的电费除以0.60元,求出第二档的用电量,再用加上第一档的100千瓦时,即是小明家十月的用电量。
(千瓦时)
答:他们家十月用电148千瓦时。
【点睛】
本题是分段计费问题,要弄清楚每段的临界点,和每段的收费标准;掌握小数四则运算法则,以及单价、总价、数量之间的关系是解题的关键。
26.18千米
【解析】
首先根据:工作效率工作量工作时间,用这条公路的全长除以修完的天数,求出两队每天修公路的长度之和,再减去甲队每天修的长度,就是乙队每天修的长度。
(千米)
答:乙队每天修0.18千米。
【点睛】
本题考查小数四则运算的应用,掌握工作量、工作效率、工作时间之间的关系是解题的关键。
27.4千克
【解析】
根据题意,一箱苹果15千克,每千克11元,依据“单价×数量=总价”,求出买苹果花掉的钱数,再用总钱数减去买苹果花掉的钱数,求出买香蕉所用的钱数,再用买香蕉所用的钱数÷单价=香蕉的重量,列式解答即可。
11×15=165(元)
189.3-165=24.3(元)
24.3÷4.5=5.4(千克)
答:这把香蕉重5.4千克。
【点睛】
此题解答的关键是先认真分析题意,然后根据单价、数量和总价三者之间的关系进行解答即可得出结论。
28.(1)0.8吨;(2)13.5元
【解析】
(1)求一条生产线每小时能生产米粉的吨数,用生产米粉的吨数连续除以生产的时间和自动化生产线的条数即可得解;
(2)螺蛳粉的重量是3.3kg,超出部分的重量是(3.3-1)kg,不足1kg按1kg计算,取整数,然后乘2.5即可计算出超出部分收取的费用,再加上1kg以内的费用6元,即是小莉要付的快递费。
(1)9.6÷4÷3
=2.4÷3
=0.8(吨)
答:一条自动化螺蛳粉生产线每小时能生产米粉0.8吨。
(2)3.3-1=2.3(kg)取整千克数3kg。
3×2.5+6
=3×2.5+6
=7.5+6
=13.5(元)
答:小莉要付13.5元的快递费。
【点睛】
此题考查了小数的连除运算和小数的四则运算,难点是分段计费问题,解答此题关键是明确属于按哪一段的收费标准收费。
29.18个
【解析】
先求出一个礼盒需要多长彩带,再求出一根32.5米长的彩带最多可以包扎几个礼盒,用去尾法解决。
(个)……0.1(米)
≈18(个)
答:一根32.5米长的彩带最多可以包扎18个礼盒。
【点睛】
本题考查商的近似数,解答本题的关键是掌握用去尾法解决问题。
30.9岁
【解析】
设今年大头儿子x岁,则爸爸今年4x岁,根据爸爸年龄-大头儿子年龄=27岁,列出方程解答即可。
解:设今年大头儿子x岁。
4x-x=27
3x÷3=27÷3
x=9
答:今年大头儿子9岁。
【点睛】
用方程解决问题的关键是找到等量关系。
31.72本;24本
【解析】
设科技数有x本,那么故事书有3x本,故事书本数-科技数本数=48本,据此列方程解答。
解:设科技数有x本。
3x-x=48
2x=48
x=24
24×3=72(本)
答:
解析:72本;24本
【解析】
设科技数有x本,那么故事书有3x本,故事书本数-科技数本数=48本,据此列方程解答。
解:设科技数有x本。
3x-x=48
2x=48
x=24
24×3=72(本)
答:故事书有72本,科技数有24本。
【点睛】
此题考查了列方程解决问题,等量关系较明显,分别表示出两种书的本数是解题关键。
32.40cm
【解析】
根据平行四边形面积公式,先用底12cm乘高6cm,求出这个平行四边形的面积,再将其除以高9cm,求出对应的底。最后,将平行四边形的两个底相加再乘2,求出至少要用多长的铁丝。
12
解析:40cm
【解析】
根据平行四边形面积公式,先用底12cm乘高6cm,求出这个平行四边形的面积,再将其除以高9cm,求出对应的底。最后,将平行四边形的两个底相加再乘2,求出至少要用多长的铁丝。
12×6÷9=8(cm)
(8+12)×2
=20×2
=40(cm)
答:至少要用40cm长的铁丝。
【点睛】
本题考查了平行四边形的面积和周长,平行四边形面积=底×高,平行四边形的周长就是四个边的长度之和。
33.24米
【解析】
如果从上底向下底挖一条水渠,这条水渠最短是梯形田的高,再根据梯形的面积计算公示求出高即可。
(米)
答:这条水渠最短是24米。
【点睛】
本题考查梯形的面积,解答本题的关键是掌
解析:24米
【解析】
如果从上底向下底挖一条水渠,这条水渠最短是梯形田的高,再根据梯形的面积计算公示求出高即可。
(米)
答:这条水渠最短是24米。
【点睛】
本题考查梯形的面积,解答本题的关键是掌握梯形的面积计算公式。
34.18平方厘米
【解析】
解析:18平方厘米
【解析】
35.1280cm2
【解析】
(24+16+24)×(24+16)÷2=1280(cm2)
解析:1280cm2
【解析】
(24+16+24)×(24+16)÷2=1280(cm2)
36.800m2
【解析】
(100-20)×20÷2=800(m2)
解析:800m2
【解析】
(100-20)×20÷2=800(m2)
37.25m
【解析】
解析:25m
【解析】
38.2200千克
【解析】
根据梯形的面积公式可计算出这块梯形地的面积,然后再用共收的油籽除以梯形的面积即可,列式解答即可得到答案.
梯形土地的面积为:
(220+340)×57.5÷2
=560×57
解析:2200千克
【解析】
根据梯形的面积公式可计算出这块梯形地的面积,然后再用共收的油籽除以梯形的面积即可,列式解答即可得到答案.
梯形土地的面积为:
(220+340)×57.5÷2
=560×57.5÷2,
=32200÷2,
=16100(平方米),
16100平方米=1.61公顷,
3542÷1.61=2200(千克);
答:平均每公顷产油籽2200千克.
39.260m2
【解析】
围花坛的篱笆长=上底+下底+20m,据此求出梯形上下底之和,再利用梯形的面积公式解答即可。
(m2)
答:这个花坛的面积是260m2。
【点睛】
本题考查梯形的周长和面积,
解析:260m2
【解析】
围花坛的篱笆长=上底+下底+20m,据此求出梯形上下底之和,再利用梯形的面积公式解答即可。
(m2)
答:这个花坛的面积是260m2。
【点睛】
本题考查梯形的周长和面积,解答本题的关键是掌握梯形的周长和面积计算公式。
40.【解析】
如图分析,阴影部分的面积等于三角形ABC的面积减去三角形CEG的面积,梯形CFDG的面积等于三角形DEF面积减去三角形CEG的面积,三角形ABC的面积等于三角形DEF的面积,它们减去的都
解析:
【解析】
如图分析,阴影部分的面积等于三角形ABC的面积减去三角形CEG的面积,梯形CFDG的面积等于三角形DEF面积减去三角形CEG的面积,三角形ABC的面积等于三角形DEF的面积,它们减去的都是同一个三角形CEG的面积,所以阴影部分的面积等于梯形CFDG的面积,利用梯形面积公式求出即可。
梯形CFDG的上底=10-3=7厘米;梯形面积列式:
即阴影部分的面积。
答:阴影部分的面积的是
【点睛】
此题的解题关键是把求阴影部分面积转化成求梯形的面积,然后利用面积公式求出即可。
41.爸爸8400元,妈妈5600元。
【解析】
可先设出小红妈妈的工资为未知数,可得出小红爸爸工资是她的1.5倍,可列出方程,运用等式基本性质解出方程,即可得出答案。
解:画出线段图:
设小红妈妈的工
解析:爸爸8400元,妈妈5600元。
【解析】
可先设出小红妈妈的工资为未知数,可得出小红爸爸工资是她的1.5倍,可列出方程,运用等式基本性质解出方程,即可得出答案。
解:画出线段图:
设小红妈妈的工资为x,小红爸爸的工资为1.5x,则可列出方程:
则小红爸爸的工资为:(元)。
答:上个月小红爸爸的工资是8400元,小红妈妈工资为5600元。
【点睛】
本题主要考查的是运用方程解决实际问题,解题的关键是熟练找出等量关系,进而列出方程得出答案。
42.156本
【解析】
此题可以设甲班有图书x本,乙班有图书(296-x)本,甲班图书的可表示成x,乙班图书的可表示成:(296-x)×,两个加起来是95本,列出方程,求解即可。
解:设甲班图书有x本。
解析:156本
【解析】
此题可以设甲班有图书x本,乙班有图书(296-x)本,甲班图书的可表示成x,乙班图书的可表示成:(296-x)×,两个加起来是95本,列出方程,
展开阅读全文