1、人教七年级下册数学期末测试试卷含答案一、选择题1的平方根是()ABCD2下列对象中不属于平移的是( )A在平坦雪地上滑行的滑雪运动员B上上下下地迎送来客的电梯C一棵倒映在湖中的树D在笔直的铁轨上飞驰而过的火车3下列各点中,在第二象限的是( )ABCD4下列四个命题:的平方根是;是5的算术平方根;经过一点有且只有一条直线与这条直线平行;两条直线被第三条直线所截,同旁内角互补其中真命题有( )A0个B1个C2个D3个5如图,直线,点,分别是,上的动点,点在上,和的角平分线交于点,若,则的值为( )A70B74C76D806下列各式中,正确的是( )A=4B=4CD7如图,中,将边绕点按逆时针旋转一
2、周回到原来位置,在旋转过程中,当时,求边旋转的角度,嘉嘉求出的答案是50,琪琪求出的答案是230,则下列说法正确的是( )A嘉嘉的结果正确B琪琪的结果正确C两个人的结果合在一起才正确D两个人的结果合在一起也不正确8如图,在平面直角坐标系中,A(1,1),B(1,1),C(1,2),D(1,2),把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按ABCDA的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A(1,0)B(0,2)C(1,2)D(0,1)九、填空题9计算_十、填空题10点A(2,1)关于x轴对称的点的坐标是_十一、填空题11如
3、图,已知OB、OC为ABC的角平分线,DEBC交AB、AC于D、E,ADE的周长为12,BC长为5,则ABC的周长_十二、填空题12如图,将三角板与直尺贴在一起,使三角板的直角顶点C(=90)在直尺的一边上,若=63,则的度数是_十三、填空题13把一张对边互相平行的纸条折成如图所示,是折痕,若,则_十四、填空题14当时,我们把称为x为“和1负倒数”如:1的“和1负倒数”为;-3的“和1负倒数”为若,是的“和1负倒数”,是的“和1负倒数”依次类推,则_; _十五、填空题15如图,已知,第四象限的点到轴的距离为3,若,满足,则与轴的交点坐标为_十六、填空题16如图,在直角坐标系中,A(1,3),B
4、(2,0),第一次将AOB变换成OA1B1,A1(2,3),B1(4,0);第二次将OA1B1变换成OA2B2,A2(4,3),B2(8,0),第三次将OA2B2变换成OA3B3,则B2021的横坐标为_十七、解答题17计算:(1) (2)十八、解答题18求下列各式中的的值:(1); (2)十九、解答题19如图,点,分别是、上的点,(1)对说明理由,将下列解题过程补充完整解:(已知)_(_)(已知)_(_)(_)(2)若比大,求的度数二十、解答题20如图,在平面直角坐标系中,DABC的顶点 C的坐标为(1,3)点A、B分别在格点上(1)直接写出A、B两点的坐标;(2)若把DABC向上平移3个单
5、位,再向右平移2个单位得DABC,画出DABC;(3)若DABC内有一点 M(m,n),按照(2)的平移规律直接写出平移后点M的对应点 M的坐标二十一、解答题21例如即,的整数部分为2,小数部分为,仿照上例回答下列问题;(1)介于连续的两个整数a和b之间,且ab,那么a ,b ;(2)x是的小数部分,y是的整数部分,求x ,y ;(3)求的平方根二十二、解答题22如图,阴影部分(正方形)的四个顶点在55的网格格点上(1)请求出图中阴影部分(正方形)的面积和边长 (2)若边长的整数部分为,小数部分为,求的值二十三、解答题23如图,已知/,点是射线上一动点(与点不重合),分别平分和,分别交射线于点
6、(1)当时,的度数是_;(2)当,求的度数(用的代数式表示);(3)当点运动时,与的度数之比是否随点的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律(4)当点运动到使时,请直接写出的度数二十四、解答题24已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E,F点,且(1)将直角如图1位置摆放,如果,则_;(2)将直角如图2位置摆放,N为上一点,请写出与之间的等量关系,并说明理由; (3)将直角如图3位置摆放,若,延长交直线b于点Q,点P是射线上一动点,探究与的数量关系,请直接写出结论二十五、解答题25(1)如图1,BAD的平分线AE与BCD的平分线CE交于点E,AB
7、CD,ADC=50,ABC=40,求AEC的度数;(2)如图2,BAD的平分线AE与BCD的平分线CE交于点E,ADC=,ABC=,求AEC的度数;(3)如图3,PQMN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由【参考答案】一、选择题1C解析:C【分析】根据平方根的定义求解即可【详解】解:,36的平方根是,故选:C【点睛】此题考查的是求一个数的平方根,掌握平方根的定义是解决此题的关键2C【分析】根据平移的性质,对选项进行一一分析,利用排除法求解【详解】解:A、滑雪运动员在平坦雪地上滑行,符合平移
8、的性质,故属于平移;B、电梯上上下下地迎送来客,符合平移的性质,故属于平移解析:C【分析】根据平移的性质,对选项进行一一分析,利用排除法求解【详解】解:A、滑雪运动员在平坦雪地上滑行,符合平移的性质,故属于平移;B、电梯上上下下地迎送来客,符合平移的性质,故属于平移;C、一棵树倒映在湖中,山与它在湖中的像成轴对称,故不属于平移;D、火车在笔直的铁轨上飞弛而过,符合平移的性质,故属于平移;故选:C【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或轴对称3B【分析】根据各象限内点的坐标特征对各选项分析判断即可得解【详解】解:A、点在x轴
9、上,不符合题意;B、点在第二象限,符合题意;C、点在第三象限,不符合题意;D、点在第四象限,不符合题意;故选:B【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4B【分析】根据算术平方根的概念、平方根的概念、平行公理、平行线的性质判断即可【详解】解:,3的平方根是,故原命题错误,是假命题,不符合题意;是5的算术平方根,正确,是真命题,符合题意;经过直线外一点,有且只有一条直线与这条直线平行,故原命题错误,是假命题,不符合题意;两条平行直线被第三条直线所截
10、,同旁内角互补,故原命题错误,是假命题,不符合题意真命题只有,故选:B【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理5C【分析】先由平行线的性质得到ACB512,再由三角形内角和定理和角平分线的定义求出m即可【详解】解:过C作CHMN,65,712,ACB67,ACB512,D52,15318052128,由题意可得GD为AGB的角平分线,BD为CBN的角平分线,12,34,m125215,41D152,34152,1531515221552m52,m52=128,m76故选:C【点睛】本题主要考查平行线的性质和角平分线的
11、定义,关键是对知识的掌握和灵活运用6C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得【详解】A、,此项错误;B、,此项错误;C、,此项正确;D、,此项错误;故选:C【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键7C【分析】分两种情况进行讨论,根据平行线的性质,周角的性质,三角形内角和的性质求解即可【详解】解:当点在点的右边时,如下图:为旋转的角度,即旋转角为当点在点的左边时,如下图:根据三角形内角和可得旋转的角度为综上所述,旋转角度为或故选C【点睛】此题考查了平行线的性质,三角形内角和的性质,周角的性质,熟练掌握相关基本性质是解题的关键8D【分析】根据题意可得,
12、从ABCDA一圈的长度为2(AB+BC)10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标【详解解析:D【分析】根据题意可得,从ABCDA一圈的长度为2(AB+BC)10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标【详解】解:A点坐标为(1,1),B点坐标为(1,1),C点坐标为(1,2),AB1(1)2,BC2(1)3,从ABCDA一圈的长度为2(AB+BC)102021102021,细线另一端在绕四边形第202圈的第1个单位长度的位置,即细线另一端所在位置的点的坐标是(
13、0,1)故选:D【点睛】本题考查了坐标规律探索,找到规律是解题的关键九、填空题911【分析】直接利用算术平方根的定义以及有理数的乘方运算法则分别化简得出答案【详解】解:原式=2+9=11故答案为:11【点睛】此题主要考查了算术平方根以及有理数的乘方运算,正解析:11【分析】直接利用算术平方根的定义以及有理数的乘方运算法则分别化简得出答案【详解】解:原式=2+9=11故答案为:11【点睛】此题主要考查了算术平方根以及有理数的乘方运算,正确化简各数是解题关键十、填空题10(2,1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答【详解】解:点(-2,1)关于x轴对称的点的坐标是(
14、-2,-1),故答案为:(-2,-1)【点睛】本解析:(2,1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答【详解】解:点(-2,1)关于x轴对称的点的坐标是(-2,-1),故答案为:(-2,-1)【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数十一、填空题1117【详解】0B、OC为ABC的角平分线,ABO=OBC,ACO=BCO,DEBC,DOB=OBC,EOC=OCB,A
15、BO=DOB,ACO=EOC,解析:17【详解】0B、OC为ABC的角平分线,ABO=OBC,ACO=BCO,DEBC,DOB=OBC,EOC=OCB,ABO=DOB,ACO=EOC,BD=OD,EC=OE,DE=OD+OE=BD+EC;ADE的周长为12,AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=12,BC=7,ABC的周长为:AB+AC+BC=12+5=17.故答案为17.十二、填空题1227【分析】根据直尺的两边是平行的,从而可以得到CDEF,然后根据平行线的性质,可以得到2和DCE的关系,再根据ACB=1+DCE,从而可以求得1的度数,本题得以解决【
16、详解】解析:27【分析】根据直尺的两边是平行的,从而可以得到CDEF,然后根据平行线的性质,可以得到2和DCE的关系,再根据ACB=1+DCE,从而可以求得1的度数,本题得以解决【详解】解:CD/EF,2=63,2=DCE=63,DCE+1=ACB=90,1=27,故答案为:27【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质和数形结合的思想解答十三、填空题13【分析】需理清楚折叠后,得到的新的角与原来的角相等,再结合平行线的性质:两直线平行,内错角相等即可求解【详解】,是折痕,折叠后,故答案为:【点睛】本题考查了平行解析:【分析】需理清楚折叠后,得到的新的角与原来的角
17、相等,再结合平行线的性质:两直线平行,内错角相等即可求解【详解】,是折痕,折叠后,故答案为:【点睛】本题考查了平行线的性质,折叠问题,体现了数学的转化思想,模型思想十四、填空题14【分析】根据“和1负倒数”的定义分别计算、,可得到数字的变化规律:从开始每3个数为一周期循环,由此即可解答【详解】解:由“和1负倒数”定义和可得:,由此可得出从开解析:【分析】根据“和1负倒数”的定义分别计算、,可得到数字的变化规律:从开始每3个数为一周期循环,由此即可解答【详解】解:由“和1负倒数”定义和可得:,由此可得出从开始每3个数为一周期循环,20213=6732,又= =1, =3,故答案为:;3【点睛】本
18、题考查新定义的实数运算、数字型规律探究,理解新定义的运算法则,正确得出数字的变化规律是解答的关键十五、填空题15【分析】根据二次根式的非负性、绝对值的非负性求出a,b,再求出直线BC的解析式即可得解;【详解】、都有意义,第四象限的点到轴的距离为3,C点的坐标为,设直解析:【分析】根据二次根式的非负性、绝对值的非负性求出a,b,再求出直线BC的解析式即可得解;【详解】、都有意义,第四象限的点到轴的距离为3,C点的坐标为,设直线BC的解析式为,把,代入得:,解得:,故BC的解析式为,当时,故与轴的交点坐标为;故答案是【点睛】本题主要考查了用待定系数法求一次函数解析式、绝对值的非负性、坐标与图形的性
19、质,准确计算是解题的关键十六、填空题16【分析】根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解【详解】解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可解析:【分析】根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解【详解】解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可得:,B2021的横坐标为;故答案为【点睛】本题主要考查图形与坐标,解题的关键是根据题意得到点的坐标规律十七、解答题17(1)-3;(2)-11【分析】(1)分别计算乘方,立方根
20、,绝对值,再合并即可得到答案;(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案【详解】(1)解:原式=(2)解解析:(1)-3;(2)-11【分析】(1)分别计算乘方,立方根,绝对值,再合并即可得到答案;(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案【详解】(1)解:原式=(2)解:原式 =【点睛】本题考查的是乘法的分配律的应用,乘方运算,求一个数的立方根,求一个数的绝对值,掌握以上知识是解题的关键十八、解答题18(1)或;(2)【分析】(1)方程整理后,利用平方根定义开方即可求出x的值;(2)方程利用立方根定义开立方即可求出x的值【详解】解:(1),或(2),【点睛
21、】此题考查了解析:(1)或;(2)【分析】(1)方程整理后,利用平方根定义开方即可求出x的值;(2)方程利用立方根定义开立方即可求出x的值【详解】解:(1),或(2),【点睛】此题考查了立方根,以及平方根,熟练掌握运算法则是解本题的关键十九、解答题19(1)BFD;两直线平行,同位角相等;BFD;等量代换;内错角相等,两直线平行;(2)70【分析】(1)根据平行线的性质得出ABFD,求出BFDFDE,根据平行线的判定得出即可解析:(1)BFD;两直线平行,同位角相等;BFD;等量代换;内错角相等,两直线平行;(2)70【分析】(1)根据平行线的性质得出ABFD,求出BFDFDE,根据平行线的判
22、定得出即可;(2)根据平行线的性质得出A+AED180,ABFD,再求出AEDA40,即可求出答案【详解】(1)证明:DFAC(已知),ABFD(两直线平行,同位角相等),AFDE(已知),FDEBFD(等量代换),DEAB(内错角相等,两直线平行);故答案为:BFD;两直线平行,同位角相等;BFD;等量代换;内错角相等,两直线平行;(2)解:DFAC,ABFD,AED比BFD大40,AEDBFD40,AEDA40,AED40+A,DEAB,A+AED180,A+40+A180,A70,BFD70【点睛】本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键,注意:平行线的性质有
23、:两直线平行,同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补,反之亦然二十、解答题20(1),;(2)见解析;(3)【分析】(1)根据原点的位置确定点的坐标即可;(2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可;(3)将M(m,n)向上平移3个单位,再向右平移解析:(1),;(2)见解析;(3)【分析】(1)根据原点的位置确定点的坐标即可;(2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可;(3)将M(m,n)向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3即可得到的坐标【详解】(1)根据原点的位置确定点的坐标,则,;(2)将三点向上平移3
24、个单位,再向右平移2个单位得到,在图中描出点,连接,DABC即为所求(3)将M(m,n)向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3【点睛】本题考查了平面直角坐标系的定义,平移的作图,根据平移的方向和距离确定点的坐标是解题的关键二十一、解答题21(1),;(2);(3)【分析】(1)根据的范围确定出、的值;(2)求出,的范围,即可求出、的值,代入求出即可;(3)将代入中即可求出【详解】解:(1),故答案是:,;(解析:(1),;(2);(3)【分析】(1)根据的范围确定出、的值;(2)求出,的范围,即可求出、的值,代入求出即可;(3)将代入中即可求出【详解】解:(1),故答案
25、是:,;(2),的小数部分为:,的整数部分为:3;故答案是:;(3),的平方根为:【点睛】本题考查了估算无理数的大小的应用、求平方根,解题的关键是读懂题意及求出二十二、解答题22(1)S=13,边长为 ;(2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案解析:(1)S=13,边长为 ;(2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案详解:解:(1)S=25-12=13
26、, 边长为 ,(2)a=3,b= -3 原式=9+-3-=6点睛:本题主要考查的就是无理数的估算,属于中等难度的题型解决这个问题的关键就是根据正方形的面积得出边长二十三、解答题23(1)120;(2)90-x;(3)不变,;(4)45【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得ABN=180-x,根据角平分线的定义知解析:(1)120;(2)90-x;(3)不变,;(4)45【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得ABN=180-x,根据角平分线的定义知ABP=2CBP、PBN=2DBP,可得2CBP+2DBP=1
27、80-x,即CBD=CBP+DBP=90-x;(3)由AMBN得APB=PBN、ADB=DBN,根据BD平分PBN知PBN=2DBN,从而可得APB:ADB=2:1;(4)由AMBN得ACB=CBN,当ACB=ABD时有CBN=ABD,得ABC+CBD=CBD+DBN,即ABC=DBN,根据角平分线的定义可得ABP=PBN=ABN=2DBN,由平行线的性质可得A+ABN=90,即可得出答案【详解】解:(1)AMBN,A=60,A+ABN=180,ABN=120;(2)AMBN,ABN+A=180,ABN=180-x,ABP+PBN=180-x,BC平分ABP,BD平分PBN,ABP=2CBP,
28、PBN=2DBP,2CBP+2DBP=180-x,CBD=CBP+DBP=(180-x)=90-x;(3)不变,ADB:APB=AMBN,APB=PBN,ADB=DBN,BD平分PBN,PBN=2DBN,APB:ADB=2:1,ADB:APB=;(4)AMBN,ACB=CBN,当ACB=ABD时,则有CBN=ABD,ABC+CBD=CBD+DBN,ABC=DBN,BC平分ABP,BD平分PBN,ABP=2ABC,PBN=2DBN,ABP=PBN=2DBN=ABN,AMBN,A+ABN=180,A+ABN=90,A+2DBN=90,A+DBN=(A+2DBN)=45【点睛】本题主要考查平行线的性
29、质和角平分线的定义,熟练掌握平行线的性质是解题的关键二十四、解答题24(1)146;(2)AOG+NEF=90;(3)见解析【分析】(1)作CP/a,则CP/a/b,根据平行线的性质求解(2)作CP/a,由平行线的性质及等量代换得AOG+N解析:(1)146;(2)AOG+NEF=90;(3)见解析【分析】(1)作CP/a,则CP/a/b,根据平行线的性质求解(2)作CP/a,由平行线的性质及等量代换得AOG+NEF=ACP+PCB=90(3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解【详解】解:(1)如图,作CP/a,a/b,CP/a,CP/a/b,AOG
30、=ACP=56,BCP+CEF=180,BCP=180-CEF,ACP+BCP=90,AOG+180-CEF=90,CEF=180-90+AOG=146(2)AOG+NEF=90.理由如下:如图,作CP/a,则CP/a/b,AOG=ACP,BCP+CEF=180,NEF+CEF=180,BCP=NEF,ACP+BCP=90,AOG+NEF=90(3)如图,当点P在GF上时,作PN/a,连接PQ,OP,则PN/a/b,GOP=OPN,PQF=NPQ,OPQ=OPN+NPQ=GOP+PQF,GOC=GOP+POQ=135,GOP=135-POQ,OPQ=135-POQ+PQF如图,当点P在GF延长
31、线上时,作PN/a,连接PQ,OP,则PN/a/b,GOP=OPN,PQF=NPQ,OPN=OPQ+QPN,GOP=OPQ+PQF,135-POQ=OPQ+PQF【点睛】本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解二十五、解答题25(1)E=45;(2)E=;(3)不变化,【分析】(1)由三角形内角和定理,可得D+ECD=E+EAD,B+EAB=E+ECB,由角平分线的性质,可得ECD=ECB=解析:(1)E=45;(2)E=;(3)不变化,【分析】(1)由三角形内角和定理,可得D+ECD=E+EAD,B+EAB=E+ECB,由角平分线的性质,
32、可得ECD=ECB=BCD,EAD=EAB=BAD,则可得E= (D+B),继而求得答案;(2)首先延长BC交AD于点F,由三角形外角的性质,可得BCD=B+BAD+D,又由角平分线的性质,即可求得答案(3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案【详解】解:(1)CE平分BCD,AE平分BAD ECD=ECB=BCD,EAD=EAB=BAD, D+ECD=E+EAD,B+EAB=E+ECB, D+ECD+B+EAB=E+EAD+E+ECB D+B=2E, E=(D+B), ADC=50,ABC=40, AEC= (50+40)=45;(2)延长BC交AD于点F, BFD=B+BAD, BCD=BFD+D=B+BAD+D, CE平分BCD,AE平分BAD ECD=ECB=BCD,EAD=EAB=BAD, E+ECB=B+EAB, E=B+EABECB=B+BAEBCD=B+BAE(B+BAD+D)= (BD), ADC=,ABC=, 即AEC=(3)的值不发生变化,理由如下:如图,记与交于,与交于, , 得: AD平分BAC, 【点睛】此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义此题难度较大,注意掌握整体思想与数形结合思想的应用