收藏 分销(赏)

动态平衡、整体法与隔离法.doc

上传人:天**** 文档编号:1849506 上传时间:2024-05-10 格式:DOC 页数:12 大小:375KB
下载 相关 举报
动态平衡、整体法与隔离法.doc_第1页
第1页 / 共12页
动态平衡、整体法与隔离法.doc_第2页
第2页 / 共12页
点击查看更多>>
资源描述
第一部分 动态平衡、平衡中的临界和极值问题   一、平衡物体的动态问题   (1)动态平衡:   指通过控制某些物理量使物体的状态发生缓慢变化。在这个过程中物体始终处于一系列平衡状态中。   (2)动态平衡特征:   一般为三力作用,其中一个力的大小和方向均不变化,一个力的大小变化而方向不变,另一个力的大小和方向均变化。   (3)平衡物体动态问题分析方法:   解动态问题的关键是抓住不变量,依据不变的量来确定其他量的变化规律,常用的分析方法有解析法和图解法。     晶品质心_新浪博客   解析法的基本程序是:对研究对象的任一状态进行受力分析,建立平衡方程,求出应变物理量与自变物理量的一般函数关系式,然后根据自变量的变化情况及变化区间确定应变物理量的变化情况。   图解法的基本程序是:对研究对象的状态变化过程中的若干状态进行受力分析,依据某一参量的变化(一般为某一角),在同一图中作出物体在若干状态下的平衡力图(力的平形四边形或三角形),再由动态的力的平行四边形或三角形的边的长度变化及角度变化确定某些力的大小及方向的变化情况。     【例】如图所示,轻绳的两端分别系在圆环A和小球B上,圆环A套在粗糙的水平直杆MN上。现用水平力F拉着绳子上的一点O,使小球B从图中实线位置缓慢上升到虚线位置,但圆环A始终保持在原位置不动。则在这一过程中,环对杆的摩擦力Ff和环对杆的压力FN的变化情况是(   )   A、Ff不变,FN不变       B、Ff增大,FN不变   C、Ff增大,FN减小       D、Ff不变,FN减小   【解析】以结点O为研究对象进行受力分析如图(a)。   由题可知,O点处于动态平衡,则可作出三力的平衡关系图如图(a)。   由图可知水平拉力增大。      以环、绳和小球构成的整体作为研究对象,作受力分析图如图(b)。   由整个系统平衡可知:FN=(mA+mB)g;Ff=F。   即Ff增大,FN不变,故B正确。   【答案】B     晶品质心_新浪博客      (1)图解分析法   对研究对象在状态变化过程中的若干状态进行受力分析,依据某一参量的变化,在同一图中作出物体在若干状态下力的平衡图(力的平行四边形),再由动态力的平行四边形各边长度变化及角度变化确定力的大小及方向的变化情况。     晶品质心_新浪博客   动态平衡中各力的变化情况是一种常见题型。总结其特点有:合力大小和方向都不变;一个分力的方向不变,分析另一个分力方向变化时两个分力大小的变化情况。用图解法具有简单、直观的优点。 例1、如图所示,光滑水平地面上放有截面为圆周的柱状物体A,A与墙面之间放一光滑的圆柱形物体B,对A施加一水平向左的力F,整个装置保持静止.若将A的位置向左移动稍许,整个装置仍保持平衡,则(  )   A.水平外力F增大   B.墙对B的作用力减小   C.地面对A的支持力减小   D.B对A的作用力减小   解析:受力分析如图所示,A的位置左移,θ角减小,FN1=Gtanθ,FN1减小,B项正确;FN=G/cosθ,FN减小,D项正确;以AB为一个整体受力分析,FN1=F,所以水平外力减小,A项错误;地面对A的作用力等于两个物体的重力,所以该力不变,C项错误.本题难度中等.   答案:BD     晶品质心_新浪博客 2、如图所示,木棒AB可绕B点在竖直平面内转动,A端被绕过定滑轮吊有重物的水平绳和绳AC拉住,使棒与地面垂直,棒和绳的质量及绳与滑轮的摩擦均可忽略,如果把C端拉至离B端的水平距离远一些的C′点,AB仍沿竖直方向,装置仍然平衡,那么AC绳受的张力F1和棒受的压力F2的变化是(   )   A、F1和F2均增大    B、F1增大,F2减小   C、F1减小,F2增大   D、F1和F2都减小 【例3】如图所示装置,两根细绳拴住一球,保持两细绳间的夹角不变,若把整个装置顺时针缓慢转过90°,则在转动过程中,CA绳的拉力FA大小变化情况是    ,CB绳的拉力FB的大小变化情况是   。   【解析】取球为研究对象,由于球处于一个动态平衡过程,球的受力情况如图所示:重力mg,CA绳的拉力FA,CB绳的拉力FB,这三个力的合力为零,根据平衡条件可以作出mg、FA、FB组成矢量三角形如图所示。   将装置顺时针缓慢转动的过程中,mg的大小方向不变,而FA、FB的大小方向均在变,但可注意到FA、FB两力方向的夹角θ不变。那么在矢量三角形中,FA、FB的交点必在以mg所在的边为弦且圆周角为π-θ的圆周上,所以在装置顺时针转动过程中,CA绳的拉力FA大小先增大后减小;CB绳的拉力FB的大小一直在减小。    (2)相似三角形法   对受三力作用而平衡的物体,先正确分析物体的受力,画出受力分析图,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。    例4 、如图所示,AC是上端带定滑轮的固定竖直杆,质量不计的轻杆BC一端通过铰链固定在C点,另一端B悬挂一重为G的重物,且B端系有一根轻绳并绕过定滑轮A,用力F拉绳,开始时∠BCA>90°。现使∠BCA缓慢变小,直到杆BC接近竖直杆AC。此过程中,杆BC所受的力(   )   A、大小不变            B、逐渐增大   C、先减小后增大        D、先增大后减小    晶品质心_新浪博客   (3)解析法   根据物体的平衡条件列方程,在解方程时采用数学知识讨论某物理量随变量的变化关系。 例5:人站在岸上通过定滑轮用绳牵引低处的小船,若水的阻力不变,则船在匀速靠岸的过程中,下列说法中正确的是( ) (A)绳的拉力不断增大 (B)绳的拉力保持不变 (C)船受到的浮力保持不变 (D)船受到的浮力不断减小 4、如图所示,用绳OA、OB和OC吊着重物P处于静止状态,其中绳OA水平,绳OB与水平方向成θ角.现用水平向右的力F缓慢地将重物P拉起,用FA和FB分别表示绳OA和绳OB的张力,则(  )   A.FA、FB、F均增大   B.FA增大,FB不变,F增大   C.FA不变,FB减小,F增大   D.FA增大,FB减小,F减小   解析:把OA、OB和OC三根绳和重物P看作一个整体,整体受到重力mg,A点的拉力FA,方向沿着OA绳水平向左,B点的拉力FB,方向沿着OB绳斜向右上方,水平向右的拉力F而处于平衡状态,   有:FA=F+FBcosθ,FBsinθ=mg,   因为θ不变,所以FB不变.   再以O点进行研究,O点受到OA绳的拉力,方向不变,沿着OA绳水平向左,OB绳的拉力,大小和方向都不变,OC绳的拉力,大小和方向都可以变化,O点处于平衡状态,因此这三个力构成一个封闭的矢量三角形(如图),   刚开始FC由竖直方向逆时针旋转到图中的虚线位置,   因此FA和FC同时增大,   又FA=F+FBcosθ,FB不变,所以F增大,所以B正确.   答案:B     晶品质心_新浪博客  二、物体平衡中的临界和极值问题   1、临界问题:   (1)平衡物体的临界状态:物体的平衡状态将要变化的状态。   物理系统由于某些原因而发生突变(从一种物理现象转变为另一种物理现象,或从一种物理过程转入到另一物理过程的状态)时所处的状态,叫临界状态。   临界状态也可理解为“恰好出现”和“恰好不出现”某种现象的状态。   (2)临界条件:涉及物体临界状态的问题,解决时一定要注意“恰好出现”或“恰好不出现”等临界条件。     晶品质心_新浪博客   平衡物体的临界问题的求解方法一般是采用假设推理法,即先假设怎样,然后再根据平衡条件及有关知识列方程求解。解决这类问题关键是要注意“恰好出现”或“恰好不出现”。   2、极值问题:   极值是指平衡问题中某些物理量变化时出现最大值或最小值。   平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题。   【例4】如图所示,物体的质量为2kg,两根轻绳AB和AC的一端连接于竖直墙上,另一端系于物体上,在物体上另施加一个方向与水平线成θ=60°的拉力F,若要使两绳都能伸直,求拉力F的大小范围。      【方法提炼】抓住题中“若要使两绳都能伸直”这个隐含条件,它是指绳子伸直但拉力恰好为零的临界状态。当AC恰好伸直但未张紧时,F有最小值;当AB恰好伸直但未张紧时,F有最大值。   【例5】如图所示,一球A夹在竖直墙与三角劈B的斜面之间,三角劈的重力为G,劈的底部与水平地面间的动摩擦因数为μ,劈的斜面与竖直墙面是光滑的。问:欲使三角劈静止不动,球的重力不能超过多大?(设劈的最大静摩擦力等于滑动摩擦力)     晶品质心_新浪博客      【方法提炼】处理平衡物理中的临界问题和极值问题,首先仍要正确受力分析,搞清临界条件并且要利用好临界条件,列出平衡方程,对于分析极值问题,要善于选择物理方法和数学方法,做到数理的巧妙结合。对于不能确定的临界状态,我们采取的基本思维方法是假设推理法,即先假设为某状态,然后再根据平衡条件及有关知识列方程求解。          6、如图所示,在质量为1kg的重物上系着一条长30cm的细绳,细绳的另一端连着套在水平棒上可以滑动的圆环,环与棒间的动摩擦因数为0.75,另有一条细绳,其一端跨过定滑轮,定滑轮固定在距离圆环0.5m的地方.当细绳的端点挂上重物G,而圆环将要滑动时,试问:   (1)长为30cm的细绳的张力是多少?   (2)圆环将要开始滑动时,重物G的质量是多少?   (3)角φ多大?(环的重力忽略不计)   解析:因为圆环将要开始滑动,所以可以判定本题是在共点力作用下物体的平衡问题.   由平衡条件Fx=0,Fy=0,   建立方程有:μFN-FTcosθ=0,FN-FTsinθ=0。   所以tanθ=1/μ,θ=arctan(1/μ)=arctan(4/3).   设想:过O作OA的垂线与杆交于B′点,由AO=30cm,tanθ=4/3得,B′O的长为40cm.   在直角三角形中,由三角形的边长条件得AB′=50cm,但据题设条件AB=50cm,故B′点与定滑轮的固定处B点重合,即得φ=90°。   (1)如图所示,选取坐标系,根据平衡条件有:   Gcosθ+FTsinθ-mg=0   FTcosθ-Gsinθ=0.   即FT=8N.   (2)圆环将要滑动时,得:   mGg=FTcotθ,mG=0.6kg.   (3)前已证明φ为直角,故φ=90°.   答案:(1)8N;(2)0.6kg;(3)90°。     晶品质心_新浪博客   9、如图所示,一根弹性细绳原长为l,劲度系数为k,将其一端穿过一个光滑小孔O(其在水平地面上的投影点为O′),系在一个质量为m的滑块A上,A放在水平地面上.小孔O离绳固定端的竖直距离为l,离水平地面高度为h(h<mg/k),滑块A与水平地面间的最大静摩擦力为正压力的μ倍.问:   (1)当滑块与O′点距离为r时,弹性细绳对滑块A的拉力为多大?   (2)滑块处于怎样的区域内时可以保持静止状态?    第二部分 整体法和隔离法求解共点力平衡问题 一、整体法 整体法就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部物体之间的相互作用力。 当只涉及系统而不涉及系统内部某些物体的力和运动时,一般可采用整体法。运用整体法解题的基本步骤是: (1)明确研究的系统或运动的全过程; (2)画出系统或整体的受力图或运动全过程的示意图; (3)选用适当的物理规律列方程求解。 二、隔离法 隔离法就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑该物体对其它物体的作用力。 为了弄清系统(连接体)内某个物体的受力和运动情况,一般可采用隔离法。运用隔离法解题的基本步骤是; (1)明确研究对象或过程、状态; (2)将某个研究对象或某段运动过程、或某个状态从全过程中隔离出来; (3)画出某状态下的受力图或运动过程示意图; (4)选用适当的物理规律列方程求解。 三、应用整体法和隔离法解题的方法 1、合理选择研究对象。这是解答平衡问题成败的关键。 研究对象的选取关系到能否得到解答或能否顺利得到解答,当选取所求力的物体,不能做出解答时,应选取与它相互作用的物体为对象,即转移对象,或把它与周围的物体当做一整体来考虑,即部分的看一看,整体的看一看。 但整体法和隔离法是相对的,二者在一定条件下可相互转化,在解决问题时决不能把这两种方法对立起来,而应该灵活把两种方法结合起来使用。为使解答简便,选取对象时,一般先整体考虑,尤其在分析外力对系统的作用(不涉及物体间相互作用的内力)时。但是,在分析系统内各物体(各部分)间相互作用力时(即系统内力),必须用隔离法。 2、如需隔离,原则上选择受力情况少,且又能求解未知量的物体分析,这一思想在以后牛顿定律中会大量体现,要注意熟练掌握。 3、有时解答一题目时需多次选取研究对象,整体法和隔离法交叉运用,从而优化解题思路和解题过程,使解题简捷明了。 所以,注意灵活、交替地使用整体法和隔离法,不仅可以使分析和解答问题的思路与步骤变得极为简捷,而且对于培养宏观的统摄力和微观的洞察力也具有重要意义。 例1、 所图所示,用轻质细线把两个质量未知的小球悬挂起来,对球a持续施加一个向左偏下30°的恒力,并对球b持续施加一个向右偏上30°的同大的恒力,最后达到平衡,表示平衡状态的图可能是( A ) 例2如图,半径为R的光滑球,重为G,光滑木块厚为h,重为G1,用至少多大的水平力F推木块才能使球离开地面? • 解法一:隔离球,受力如图甲 • (受三个力N1、N2和G),由 • 平衡条件知N1和N2的合力与G • 等大反向,据三角形相似有 • …… ① • 再隔离木块,受力如图乙,据水平方向力的平衡有F=N2/sinθ…② • sinθ= …③ • ①②③联立得,F= • 解法二:先取整体(把球和木块当整体)分析,此整体在水平方向受力如图丙所示,由平衡条件有F=N1。 • 再隔离球,受力图如图甲,由三角形相似有 例3、如图所示,重为G的一条质量分布均匀的链子,两端挂在两个等高的钩子上,并与竖直方向成α角.试求: (1)链子作用在左边钩A上的力的大小和方向; (2)链子最低点处的张力. 【例4】如图所示,质量M=2 kg的木块A套在水平杆上,并用轻绳将木块A与质量m= kg的小球相连.今用跟水平方向成α=30°角的力F=10 N,拉着球带动木块一起向右匀速运动,运动中M、m相对位置保持不变,g取10 m/s2.求: (1)运动过程中轻绳与水平方向夹角θ; (2)木块与水平杆间的动摩擦因数μ. 例5如图所示,一个底面粗糙,质量为m的斜面体静止在水平地面上,斜面体的斜面部分是光滑的,倾角为30°。现用一端固定的轻绳系一质量也为m的小球,小球静止时轻绳与斜面的夹角也是30°。试求:⑴当斜面体静止时绳的拉力大小?⑵若地面对斜面体的最大静摩擦力等于地面对斜面体支持力的k倍,为了使整个系统始终保持静止状态,k 值必须满足什么条件? 练习: 1、 如图所示,光滑的金属球B放在纵截面为等腰三角形的物体A与竖直墙壁之间,恰好匀速下滑,已知物体A的重力是B的重力的6倍,不计球跟斜面和墙壁之间摩擦,问:物体A与水平面之间的动摩擦因数μ是多少? () 2、如图所示,质量为M的直角三棱柱A放在水平地面上,三棱柱的斜面是光滑的,且斜面倾角为θ。质量为m的光滑球放在三棱柱和光滑竖直墙壁之间,A和B都处于静止状态,求地面对三棱柱支持力和摩擦力各为多少? 3、如图所示,一个质量为m、顶角为α的直角劈和一个质量为M的正方体放在两竖直墙壁之间,若不计摩擦,求地面对正方体的支持力F1,左右墙壁对正方体的压力F2、F3分别是多大? 3、通过活动,使学生养成博览群书的好习惯。 B比率分析法和比较分析法不能测算出各因素的影响程度。√ C采用约当产量比例法,分配原材料费用与分配加工费用所用的完工率都是一致的。X C采用直接分配法分配辅助生产费用时,应考虑各辅助生产车间之间相互提供产品或劳务的情况。错 C产品的实际生产成本包括废品损失和停工损失。√ C成本报表是对外报告的会计报表。× C成本分析的首要程序是发现问题、分析原因。× C成本会计的对象是指成本核算。× C成本计算的辅助方法一般应与基本方法结合使用而不单独使用。√ C成本计算方法中的最基本的方法是分步法。X D当车间生产多种产品时,“废品损失”、“停工损失”的借方余额,月末均直接记入该产品的产品成本 中。× D定额法是为了简化成本计算而采用的一种成本计算方法。× F“废品损失”账户月末没有余额。√ F废品损失是指在生产过程中发现和入库后发现的不可修复废品的生产成本和可修复废品的修复费用。X F分步法的一个重要特点是各步骤之间要进行成本结转。(√) G各月末在产品数量变化不大的产品,可不计算月末在产品成本。错 G工资费用就是成本项目。(×) G归集在基本生产车间的制造费用最后均应分配计入产品成本中。对 J计算计时工资费用,应以考勤记录中的工作时间记录为依据。(√) J简化的分批法就是不计算在产品成本的分批法。(×) J简化分批法是不分批计算在产品成本的方法。对 J加班加点工资既可能是直接计人费用,又可能是间接计人费用。√ J接生产工艺过程的特点,工业企业的生产可分为大量生产、成批生产和单件生产三种,X K可修复废品是指技术上可以修复使用的废品。错 K可修复废品是指经过修理可以使用,而不管修复费用在经济上是否合算的废品。X P品种法只适用于大量大批的单步骤生产的企业。× Q企业的制造费用一定要通过“制造费用”科目核算。X Q企业职工的医药费、医务部门、职工浴室等部门职工的工资,均应通过“应付工资”科目核算。X S生产车间耗用的材料,全部计入“直接材料”成本项目。X S适应生产特点和管理要求,采用适当的成本计算方法,是成本核算的基础工作。(×) W完工产品费用等于月初在产品费用加本月生产费用减月末在产品费用。对 Y“预提费用”可能出现借方余额,其性质属于资产,实际上是待摊费用。对 Y引起资产和负债同时减少的支出是费用性支出。X Y以应付票据去偿付购买材料的费用,是成本性支出。X Y原材料分工序一次投入与原材料在每道工序陆续投入,其完工率的计算方法是完全一致的。X Y运用连环替代法进行分析,即使随意改变各构成因素的替换顺序,各因素的影响结果加总后仍等于指标的总差异,因此更换各因索替换顺序,不会影响分析的结果。(×) Z在产品品种规格繁多的情况下,应该采用分类法计算产品成本。对 Z直接生产费用就是直接计人费用。X Z逐步结转分步法也称为计列半成品分步法。√ A按年度计划分配率分配制造费用,“制造费用”账户月末(可能有月末余额/可能有借方余额/可能有贷方余额/可能无月末余额)。 A按年度计划分配率分配制造费用的方法适用于(季节性生产企业)
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服