资源描述
2022年人教版七7年级下册数学期末解答题培优卷(及答案)
一、解答题
1.如图,在网格中,每个小正方形的边长均为1,正方形的顶点都在网格的格点上.
(1)求正方形的面积和边长;
(2)建立适当的平面直角坐标系,写出正方形四个顶点的坐标.
2.如图,这是由8个同样大小的立方体组成的魔方,体积为64.
(1)求出这个魔方的棱长;
(2)图中阴影部分是一个正方形ABCD,求出阴影部分的边长.
3.如图,用两个边长为10的小正方形拼成一个大的正方形.
(1)求大正方形的边长?
(2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm2?
4.如图,用两个边长为15的小正方形拼成一个大的正方形,
(1)求大正方形的边长?
(2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2?
5.有一块正方形钢板,面积为16平方米.
(1)求正方形钢板的边长.
(2)李师傅准备用它裁剪出一块面积为12平方米的长方形工件,且要求长宽之比为,问李师傅能办到吗?若能,求出长方形的长和宽;若不能,请说明理由.(参考数据:,).
二、解答题
6.已知,,.
(1)如图1,求证:;
(2)如图2,作的平分线交于点,点为上一点,连接,若的平分线交线段于点,连接,若,过点作交的延长线于点,且,求的度数.
7.已知,AB∥CD,点E为射线FG上一点.
(1)如图1,若∠EAF=25°,∠EDG=45°,则∠AED= .
(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;
(3)如图3,当点E在FG延长线上时,DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度数.
8.已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=α°,∠EMF=β°,且(40﹣2α)2+|β﹣20|=0
(1)α= ,β= ;直线AB与CD的位置关系是 ;
(2)如图2,若点G、H分别在射线MA和线段MF上,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论;
(3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作∠PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若变化,请说明理由.
9.汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况.如图1,灯射出的光束自顺时针旋转至便立即回转,灯射出的光束自顺时针旋转至便立即回转,两灯不停交叉照射巡视.若灯射出的光束转动的速度是/秒,灯射出的光束转动的速度是/秒,且、满足.假定这一带水域两岸河堤是平行的,即,且.
(1)求、的值;
(2)如图2,两灯同时转动,在灯射出的光束到达之前,若两灯射出的光束交于点,过作交于点,若,求的度数;
(3)若灯射线先转动30秒,灯射出的光束才开始转动,在灯射出的光束到达之前,灯转动几秒,两灯的光束互相平行?
10.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.
(1)根据图1填空:∠1= °,∠2= °;
(2)现把三角板绕B点逆时针旋转n°.
①如图2,当n=25°,且点C恰好落在DG边上时,求∠1、∠2的度数;
②当0°<n<180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由.
三、解答题
11.将两块三角板按如图置,其中三角板边,,,.
(1)下列结论:正确的是_______.
①如果,则有;
②;
③如果,则平分.
(2)如果,判断与是否相等,请说明理由.
(3)将三角板绕点顺时针转动,直到边与重合即停止,转动的过程中当两块三角板恰有两边平行时,请直接写出所有可能的度数.
12.问题情境
(1)如图1,已知,求的度数.佩佩同学的思路:过点作,进而,由平行线的性质来求,求得 ;
问题迁移
(2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合与相交于点,有一动点在边上运动,连接,记.
①如图2,当点在两点之间运动时,请直接写出与之间的数量关系;
②如图3,当点在两点之间运动时,与之间有何数量关系?请判断并说明理由.
13.已知直线,M,N分别为直线,上的两点且,P为直线上的一个动点.类似于平面镜成像,点N关于镜面所成的镜像为点Q,此时.
(1)当点P在N右侧时:
①若镜像Q点刚好落在直线上(如图1),判断直线与直线的位置关系,并说明理由;
②若镜像Q点落在直线与之间(如图2),直接写出与之间的数量关系;
(2)若镜像,求的度数.
14.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况,如图,灯A射线自顺时针旋转至便立即回转,灯B射线自顺时针旋转至便立即回转,两灯不停交叉照射巡视,若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足.假定这一带长江两岸河堤是平行的,即,且
(1)求a、b的值;
(2)若灯B射线先转动45秒,灯A射线才开始转动,当灯B射线第一次到达时运动停止,问A灯转动几秒,两灯的光束互相平行?
(3)如图,两灯同时转动,在灯A射线到达之前.若射出的光束交于点C,过C作交于点D,则在转动过程中,与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.
15.综合与探究
综合与实践课上,同学们以“一个含角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线,,且,三角形是直角三角形,,,
操作发现:
(1)如图1.,求的度数;
(2)如图2.创新小组的同学把直线向上平移,并把的位置改变,发现,请说明理由.
实践探究:
(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由.
四、解答题
16.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E.
(1)如图1,点D在线段CG上运动时,DF平分∠EDB
①若∠BAC=100°,∠C=30°,则∠AFD= ;若∠B=40°,则∠AFD= ;
②试探究∠AFD与∠B之间的数量关系?请说明理由;
(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由
17.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.
(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角: ;所有与∠C相等的角: .
(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .
① 求∠B的度数;
②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.
18.如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”.
(1)如图1,在中,,是的角平分线,求证:是“准互余三角形”;
(2)关于“准互余三角形”,有下列说法:
①在中,若,,,则是“准互余三角形”;
②若是“准互余三角形”,,,则;
③“准互余三角形”一定是钝角三角形.
其中正确的结论是___________(填写所有正确说法的序号);
(3)如图2,,为直线上两点,点在直线外,且.若是直线上一点,且是“准互余三角形”,请直接写出的度数.
19.如图,直线,一副直角三角板中,.
(1)若如图1摆放,当平分时,证明:平分.
(2)若如图2摆放时,则
(3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数.
(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长.
(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间.
20.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.
小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.
问题迁移:
(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;
(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.
【参考答案】
一、解答题
1.(1)面积为29,边长为;(2),,,,图见解析.
【分析】
(1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;
(2)建立适当的坐标系后写出四个顶点的坐标
解析:(1)面积为29,边长为;(2),,,,图见解析.
【分析】
(1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;
(2)建立适当的坐标系后写出四个顶点的坐标即可.
【详解】
解:(1)正方形的面积,
正方形边长为;
(2)建立如图平面直角坐标系,
则,,,.
【点睛】
本题考查了算术平方根及坐标与图形的性质及割补法求面积,从图形中整理出直角三角形是进一步解题的关键.
2.(1)棱长为4;(2)边长为:(或)
【分析】
(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.
【详解】
解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4.
解析:(1)棱长为4;(2)边长为:(或)
【分析】
(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.
【详解】
解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4.
(2)因为正方体的棱长为4,所以AB=.
【点睛】
本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键.
3.(1)大正方形的边长是;(2)不能
【分析】
(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;
(2)先求出长方形的边长,再判断即可.
【详解】
(1)大正方形的边长是
(2)设长方形纸
解析:(1)大正方形的边长是;(2)不能
【分析】
(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;
(2)先求出长方形的边长,再判断即可.
【详解】
(1)大正方形的边长是
(2)设长方形纸片的长为3xcm,宽为2xcm,
则3x•2x=480,
解得:x=
因为,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为2:3,且面积为480cm2.
【点睛】
本题考查算术平方根,解题的关键是能根据题意列出算式.
4.(1)30;(2)不能.
【解析】
【分析】
(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;
(2)先求出长方形的边长,再判断即可.
【详解】
解:(1)∵大正方形的面积是:
∴大正
解析:(1)30;(2)不能.
【解析】
【分析】
(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;
(2)先求出长方形的边长,再判断即可.
【详解】
解:(1)∵大正方形的面积是:
∴大正方形的边长是: =30;
(2)设长方形纸片的长为4xcm,宽为3xcm,
则4x•3x=720,
解得:x= ,
4x= = >30,
所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2.
故答案为(1)30;(2)不能.
【点睛】
本题考查算术平方根,解题的关键是能根据题意列出算式.
5.(1)4米 (2)见解析
【分析】
(1)根据正方形边长与面积间的关系求解即可;
(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.
【详解】
解
解析:(1)4米 (2)见解析
【分析】
(1)根据正方形边长与面积间的关系求解即可;
(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.
【详解】
解:(1)正方形的面积是16平方米,
正方形钢板的边长是米;
(2)设长方形的长宽分别为米、米,
则,
,
,
,,
长方形长是米,而正方形的边长为4米,所以李师傅不能办到.
【点睛】
本题考查了算术平方根的实际应用,灵活的利用算术平方根表示正方形和长方形的边长是解题的关键.
二、解答题
6.(1)见解析;(2)
【分析】
(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证;
(2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的
解析:(1)见解析;(2)
【分析】
(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证;
(2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的含义得出,然后根据平行线的性质及角平分线的定义可推出;设,根据角的和差可得出,结合已知条件可求得,最后根据垂线的含义及平行线的性质,即可得出答案.
【详解】
(1)证明:
;
(2)过点E作,延长DC至Q,过点M作
,,,
AF平分
FH平分
设
,
.
【点睛】
本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键.
7.(1)70°;(2),证明见解析;(3)122°
【分析】
(1)过作,根据平行线的性质得到,,即可求得;
(2)过过作,根据平行线的性质得到,,即;
(3)设,则,通过三角形内角和得到,由角平分线
解析:(1)70°;(2),证明见解析;(3)122°
【分析】
(1)过作,根据平行线的性质得到,,即可求得;
(2)过过作,根据平行线的性质得到,,即;
(3)设,则,通过三角形内角和得到,由角平分线定义及得到,求出的值再通过三角形内角和求.
【详解】
解:(1)过作,
,
,
,,
,
故答案为:;
(2).
理由如下:
过作,
,
,
,,
,,
;
(3),
设,则,
,,
又,,
,
平分,
,
,
,
即,解得,
,
.
【点睛】
本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键.
8.(1)20,20,;(2);(3)的值不变,
【分析】
(1)根据,即可计算和的值,再根据内错角相等可证;
(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;
(3)作的平分线交的延长线于
解析:(1)20,20,;(2);(3)的值不变,
【分析】
(1)根据,即可计算和的值,再根据内错角相等可证;
(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;
(3)作的平分线交的延长线于,先根据同位角相等证,得,设,,得出,即可得.
【详解】
解:(1),
,,
,
,,
,
;
故答案为:20、20,;
(2);
理由:由(1)得,
,
,
,
,
,
,
;
(3)的值不变,;
理由:如图3中,作的平分线交的延长线于,
,
,
,,
,
,
,
设,,
则有:,
可得,
,
.
【点睛】
本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.
9.(1),;(2)30°;(3)15秒或82.5秒
【分析】
(1)解出式子即可;
(2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数;
(3)根据灯B的
解析:(1),;(2)30°;(3)15秒或82.5秒
【分析】
(1)解出式子即可;
(2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数;
(3)根据灯B的要求,t<150,在这个时间段内A可以转3次,分情况讨论.
【详解】
解:(1).
又,.
,;
(2)设灯转动时间为秒,
如图,作,而
,,
,
,
,
,
(3)设灯转动秒,两灯的光束互相平行.
依题意得
①当时,
两河岸平行,所以
两光线平行,所以
所以,
即:,
解得;
②当时,
两光束平行,所以
两河岸平行,所以
所以,,
解得;
③当时,图大概如①所示
,
解得(不合题意)
综上所述,当秒或82.5秒时,两灯的光束互相平行.
【点睛】
这道题考察的是平行线的性质和一元一次方程的应用.根据平行线的性质找到对应角列出方程是解题的关键.
10.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析
【分析】
(1)根据邻补角的定义和平行线的性质解答;
(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相
解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析
【分析】
(1)根据邻补角的定义和平行线的性质解答;
(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;
②结合图形,分AB、BC、AC三条边与直尺垂直讨论求解.
【详解】
解:(1)∠1=180°-60°=120°,
∠2=90°;
故答案为:120,90;
(2)①如图2,
∵∠ABC=60°,
∴∠ABE=180°-60°-n°=120°-n°,
∵DG∥EF,
∴∠1=∠ABE=120°-n°,
∠BCG=180°-∠CBF=180°-n°,
∵∠ACB+∠BCG+∠2=360°,
∴∠2=360°-∠ACB-∠BCG
=360°-90°-(180°-n°)
=90°+n°;
②当n=30°时,∵∠ABC=60°,
∴∠ABF=30°+60°=90°,
AB⊥DG(EF);
当n=90°时,
∠C=∠CBF=90°,
∴BC⊥DG(EF),AC⊥DE(GF);
当n=120°时,
∴AB⊥DE(GF).
【点睛】
本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.
三、解答题
11.(1)②③;(2)相等,理由见解析;(3)30°或45°或75°或120°或135°
【分析】
(1)根据平行线的判定和性质分别判定即可;
(2)利用角的和差,结合∠CAB=∠DAE=90°进行判断
解析:(1)②③;(2)相等,理由见解析;(3)30°或45°或75°或120°或135°
【分析】
(1)根据平行线的判定和性质分别判定即可;
(2)利用角的和差,结合∠CAB=∠DAE=90°进行判断;
(3)依据这两块三角尺各有一条边互相平行,分五种情况讨论,即可得到∠EAB角度所有可能的值.
【详解】
解:(1)①∵∠BFD=60°,∠B=45°,
∴∠BAD+∠D=∠BFD+∠B=105°,
∴∠BAD=105°-30°=75°,
∴∠BAD≠∠B,
∴BC和AD不平行,故①错误;
②∵∠BAC+∠DAE=180°,
∴∠BAE+∠CAD=∠BAE+∠CAE+∠DAE=180°,故②正确;
③若BC∥AD,
则∠BAD=∠B=45°,
∴∠BAE=45°,
即AB平分∠EAD,故③正确;
故答案为:②③;
(2)相等,理由是:
∵∠CAD=150°,
∴∠BAE=180°-150°=30°,
∴∠BAD=60°,
∵∠BAD+∠D=∠BFD+∠B,
∴∠BFD=60°+30°-45°=45°=∠C;
(3)若AC∥DE,
则∠CAE=∠E=60°,
∴∠EAB=90°-60°=30°;
若BC∥AD,
则∠B=∠BAD=45°,
∴∠EAB=45°;
若BC∥DE,
则∠E=∠AFB=60°,
∴∠EAB=180°-60°-45°=75°;
若AB∥DE,
则∠D=∠DAB=30°,
∴∠EAB=30°+90°=120°;
若AE∥BC,
则∠C=∠CAE=45°,
∴∠EAB=45°+90°=135°;
综上:∠EAB的度数可能为30°或45°或75°或120°或135°.
【点睛】
本题考查了平行线的判定和性质,角平分线的定义,解题的关键是理解题意,分情况画出图形,学会用分类讨论的思想思考问题.
12.(1)80;(2)①;②
【分析】
(1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数;
(2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系;
解析:(1)80;(2)①;②
【分析】
(1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数;
(2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系;
②过P作PQ∥DF,依据平行线的性质可得∠β=∠QPA,∠α=∠QPE,即可得到∠APE=∠APQ-∠EPQ=∠β-∠α.
【详解】
解:(1)过点P作PG∥AB,则PG∥CD,
由平行线的性质可得∠B+∠BPG=180°,∠C+∠CPG=180°,
又∵∠PBA=125°,∠PCD=155°,
∴∠BPC=360°-125°-155°=80°,
故答案为:80;
(2)①如图2,
过点P作FD的平行线PQ,
则DF∥PQ∥AC,
∴∠α=∠EPQ,∠β=∠APQ,
∴∠APE=∠EPQ+∠APQ=∠α+∠β,
∠APE与∠α,∠β之间的数量关系为∠APE=∠α+∠β;
②如图3,∠APE与∠α,∠β之间的数量关系为∠APE=∠β-∠α;理由:
过P作PQ∥DF,
∵DF∥CG,
∴PQ∥CG,
∴∠β=∠QPA,∠α=∠QPE,
∴∠APE=∠APQ-∠EPQ=∠β-∠α.
【点睛】
本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.
13.(1)①,证明见解析,②,(2)或.
【分析】
(1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q作QF∥CD,根据平行线的性质证即可;
(2)过点Q作QF∥CD,根据点P的位置不同,
解析:(1)①,证明见解析,②,(2)或.
【分析】
(1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q作QF∥CD,根据平行线的性质证即可;
(2)过点Q作QF∥CD,根据点P的位置不同,分类讨论,依据平行线的性质求解即可.
【详解】
(1)①,
证明:∵,
∴,
∵,
∴,
∴;
②过点Q作QF∥CD,
∵,
∴,
∴,,
∴,
∵,
∴;
(2)如图,当点P在N右侧时,过点Q作QF∥CD,
同(1)得,,
∴,,
∵,
∴,
∴,
∵,
∴,
∴,
如图,当点P在N左侧时,过点Q作QF∥CD,同(1)得,,
同理可得,,
∵,
∴,
∴,
∵,
∴,
∴;
综上,的度数为或.
【点睛】
本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系.
14.(1),;(2)15秒或63秒;(3)不发生变化,
【分析】
(1)利用非负数的性质解决问题即可.
(2)分三种情形,利用平行线的性质构建方程即可解决问题.
(3)由参数表示,即可判断.
【详解】
解析:(1),;(2)15秒或63秒;(3)不发生变化,
【分析】
(1)利用非负数的性质解决问题即可.
(2)分三种情形,利用平行线的性质构建方程即可解决问题.
(3)由参数表示,即可判断.
【详解】
解:(1)∵,
∴,
,;
(2)设灯转动秒,两灯的光束互相平行,
①当时,
,
解得;
②当时,
,
解得;
③当时,
,
解得,(不合题意)
综上所述,当t=15秒或63秒时,两灯的光束互相平行;
(3)设灯转动时间为秒,
,
,
又,
,
而,
,
,
即.
【点睛】
本题考查平行线的性质和判定,非负数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.
15.(1);(2)理由见解析;(3),理由见解析.
【分析】
(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;
(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠
解析:(1);(2)理由见解析;(3),理由见解析.
【分析】
(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;
(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC−∠DBC=60°−∠1,进而得出结论;
(3)过点C 作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出结论.
【详解】
解:(1)如图1 ,,
,
,
;
图1
(2)理由如下:如图2. 过点作,
图2
,
,
,
,
,
,
;
(3),
图3
理由如下:如图3,过点作,
平分,
,
,
又,
,
,
,
,
又 ,
,
.
【点睛】
本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.
四、解答题
16.(1)①115°;110°;②;理由见解析;(2);理由见解析
【分析】
(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由
解析:(1)①115°;110°;②;理由见解析;(2);理由见解析
【分析】
(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出,,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出,,由三角形的外角性质即可得出结果;
②由①得:∠EDB=∠C,,,由三角形的外角性质得出∠DGF=∠B+∠BAG,再由三角形的外角性质即可得出结论;
(2)由(1)得:∠EDB=∠C,,,由三角形的外角性质和三角形内角和定理即可得出结论.
【详解】
(1)①若∠BAC=100°,∠C=30°,
则∠B=180°-100°-30°=50°,
∵DE∥AC,
∴∠EDB=∠C=30°,
∵AG平分∠BAC,DF平分∠EDB,
∴,,
∴∠DGF=∠B+∠BAG=50°+50°=100°,
∴∠AFD=∠DGF+∠FDG=100°+15°=115°;
若∠B=40°,则∠BAC+∠C=180°-40°=140°,
∵AG平分∠BAC,DF平分∠EDB,
∴,,
∵∠DGF=∠B+∠BAG,
∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG
=
故答案为:115°;110°;
②;
理由如下:由①得:∠EDB=∠C,,,
∵∠DGF=∠B+∠BAG,
∴∠AFD=∠DGF+∠FDG
=∠B+∠BAG+∠FDG
=
;
(2)如图2所示:;
理由如下:
由(1)得:∠EDB=∠C,,,
∵∠AHF=∠B+∠BDH,
∴∠AFD=180°-∠BAG-∠AHF
.
【点睛】
本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.
17.(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30
【分析】
(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;
(2)①由三角形内角和定理可得,
解析:(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30
【分析】
(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;
(2)①由三角形内角和定理可得,再由根据角的和差计算即可得∠C的度数,进而得∠B的度数.
②根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出∠FDE、∠DFE的度数,分三种情况讨论求出符合题意的x值即可.
【详解】
(1)由翻折的性质可得:∠E=∠B,
∵∠BAC=90°,AE⊥BC,
∴∠DFE=90°,
∴180°-∠BAC=180°-∠DFE=90°,
即:∠B+∠C=∠E+∠FDE=90°,
∴∠C=∠FDE,
∴AC∥DE,
∴∠CAF=∠E,
∴∠CAF=∠E=∠B
故与∠B相等的角有∠CAF和∠E;
∵∠BAC=90°,AE⊥BC,
∴∠BAF+∠CAF=90°, ∠CFA=180°-(∠CAF+∠C)=90°
∴∠BAF+∠CAF=∠CAF+∠C=90°
∴∠BAF=∠C
又AC∥DE,
∴∠C=∠CDE,
∴故与∠C相等的角有∠CDE、∠BAF;
(2)①∵
∴
又∵,
∴∠C=70°,∠B=20°;
②∵∠BAD=x°, ∠B=20°则,,
由翻折可知:∵, ,
∴, ,
当∠FDE=∠DFE时,, 解得:;
当∠FDE=∠E时,,解得:(因为0<x≤45,故舍去);
当∠DFE=∠E时,,解得:(因为0<x≤45,故舍去);
综上所述,存在这样的x的值,使得△DEF中有两个角相等.且.
【点睛】
本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.
18.(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110°
【分析】
(1)由和是的角平分线,证明即可;
(2)根据“准互余三角形”的定义逐个判断即可;
(3)根据“准互余三角
解析:(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110°
【分析】
(1)由和是的角平分线,证明即可;
(2)根据“准互余三角形”的定义逐个判断即可;
(3)根据“准互余三角形”的定义,分类讨论:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.
【详解】
(1)证明:∵在中,,
∴,
∵BD是的角平分线,
∴,
∴,
∴是“准互余三角形”;
(2)①∵,
∴,
∴是“准互余三角形”,
故①正确;
②∵, ,
∴,
∴不是“准互余三角形”,
故②错误;
③设三角形的三个内角分别为,且,
∵三角形是“准互余三角形”,
∴或,
∴,
∴,
∴“准互余三角形”一定是钝角三角形,
故③正确;
综上所述,①③正确,
故答案为:①③;
(3)∠APB的度数是10°或20°或40°或110°;
如图①,
当2∠A+∠ABC=90°时,△ABP是“准直角三角形”,
∵∠ABC=50°,
∴∠A=20°,
∴∠APB=110°;
如图②,当∠A+2∠APB=90°时,△ABP是“准直角三角形”,
∵∠ABC=50°,
∴∠A+∠APB=50°,
∴∠APB=40°;
如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,
∵∠ABC=50°,
∴∠APB=20°;
如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,
∵∠ABC=50°,
∴∠A+∠APB=50°,
所以∠A=40°,
所以∠APB=10°;
综上,∠APB的度数是10°或20°或40°或110°时,是“准互余三角形”.
【点睛】
本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.
19.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s
【分析】
(1)运用角平分线定义及平行线性质即可证得结论;
(2)如图2,过点E作EK∥MN,利用平行线性
解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s
【分析】
(1)运用角平分线定义及平行线性质即可证得结论;
(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;
(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;
(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;
(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.
【详解】
(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,
∵ED平分∠PEF,
∴∠PEF=2∠PED=2∠DEF=2×60°=120°,
∵PQ∥MN,
∴∠MFE=180°−∠PEF=180°−120°=60°,
∴∠MFD=∠MFE−∠DFE=60°−30°=30°,
∴∠MFD=∠DFE,
∴FD平分∠EFM;
(2)如图2,过点E作EK∥MN,
∵∠BAC=45°,
∴∠KEA=∠BAC=45°,
∵PQ∥MN,EK∥MN,
∴PQ∥EK,
∴∠PDE=∠DEK=∠DEF−∠KEA,
又∵∠DEF=60°
展开阅读全文