1、人教七年级下册数学期末解答题压轴题卷及答案一、解答题1如图1,用两个边长相同的小正方形拼成一个大的正方形(1)如图2,若正方形纸片的面积为1,则此正方形的对角线AC的长为 dm(2)如图3,若正方形的面积为16,李明同学想沿这块正方形边的方向裁出一块面积为12的长方形纸片,使它的长和宽之比为32,他能裁出吗?请说明理由2已知足球场的形状是一个长方形,而国际标准球场的长度和宽度(单位:米)的取值范围分别是,若某球场的宽与长的比是1:1.5,面积为7350平方米,请判断该球场是否符合国际标准球场的长宽标准,并说明理由3如图,阴影部分(正方形)的四个顶点在55的网格格点上(1)请求出图中阴影部分(正
2、方形)的面积和边长 (2)若边长的整数部分为,小数部分为,求的值4某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由5有一块正方形钢板,面积为16平方米(1)求正方形钢板的边长(2)李师傅准备用它裁剪出一块面积为12平方米的长方形工件,且要求长宽之比为,问李师傅能办到吗?若能,求出长方形的长和宽;若不能,请说明理由(参考数据:,)二
3、、解答题6如图1,已知直线mn,AB 是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即OPA=QPB(1)如图1,若OPQ=82,求OPA的度数;(2)如图2,若AOP=43,BQP=49,求OPA的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为 OPQROP试判断OPQ和ORQ的数量关系,并说明理由7如图,直线AB直线CD,线段EFC
4、D,连接BF、CF(1)求证:ABF+DCFBFC;(2)连接BE、CE、BC,若BE平分ABC,BECE,求证:CE平分BCD;(3)在(2)的条件下,G为EF上一点,连接BG,若BFCBCF,FBG2ECF,CBG70,求FBE的度数8如图1,点在直线上,点在直线上,点在,之间,且满足(1)证明:;(2)如图2,若,点在线段上,连接,且,试判断与的数量关系,并说明理由;(3)如图3,若(为大于等于的整数),点在线段上,连接,若,则_9如图,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,(1)= ;(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;(3)如图3,点F
5、是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,且,求n的值10点A,C,E在直线l上,点B不在直线l上,把线段AB沿直线l向右平移得到线段CD(1)如图1,若点E在线段AC上,求证:B+D=BED;(2)若点E不在线段AC上,试猜想并证明B,D,BED之间的等量关系;(3)在(1)的条件下,如图2所示,过点B作PB/ED,在直线BP,ED之间有点M,使得ABE=EBM,CDE=EDM,同时点F使得ABE=nEBF,CDE=nEDF,其中n1,设BMD=m,利用(1)中的结论求BFD的度数(用含m,n的代数式表示)三、解答题11如图,以直角三角形的直角顶点为原点,以、所在直线为轴和
6、轴建立平面直角坐标系,点,满足(1)点的坐标为_;点的坐标为_(2)如图1,已知坐标轴上有两动点、同时出发,点从点出发沿轴负方向以1个单位长度每秒的速度匀速移动,点从点出发以2个单位长度每秒的速度沿轴正方向移动,点到达点整个运动随之结束的中点的坐标是,设运动时间为问:是否存在这样的,使?若存在,请求出的值:若不存在,请说明理由(3)如图2,过作,作交于点,点是线段上一动点,连交于点,当点在线段上运动的过程中,的值是否会发生变化?若不变,请求出它的值:若变化,请说明理由12如图1,由线段组成的图形像英文字母,称为“形”(1)如图1,形中,若,则_;(2)如图2,连接形中两点,若,试探求与的数量关
7、系,并说明理由;(3)如图3,在(2)的条件下,且的延长线与的延长线有交点,当点在线段的延长线上从左向右移动的过程中,直接写出与所有可能的数量关系13已知ABCD,点M在直线AB上,点N、Q在直线CD上,点P在直线AB、CD之间,AMPPQN,PQ平分MPN(1)如图,求MPQ的度数(用含的式子表示);(2)如图,过点Q作QEPN交PM的延长线于点E,过E作EF平分PEQ交PQ于点F请你判断EF与PQ的位置关系,并说明理由;(3)如图,在(2)的条件下,连接EN,若NE平分PNQ,请你判断NEF与AMP的数量关系,并说明理由14问题情境(1)如图1,已知,求的度数佩佩同学的思路:过点作,进而,
8、由平行线的性质来求,求得_问题迁移(2)图2图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,与相交于点,有一动点在边上运动,连接,记,如图2,当点在,两点之间运动时,请直接写出与,之间的数量关系;如图3,当点在,两点之间运动时,与,之间有何数量关系?请判断并说明理由;拓展延伸(3)当点在,两点之间运动时,若,的角平分线,相交于点,请直接写出与,之间的数量关系15如图1,在、内有一条折线(1)求证:;(2)在图2中,画的平分线与的平分线,两条角平分线交于点,请你补全图形,试探索与之间的关系,并证明你的结论;(3)在(2)的条件下,已知和均为钝角,点在直线、之间,且满足
9、,(其中为常数且),直接写出与的数量关系四、解答题16在ABC中,射线AG平分BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DEAC交AB于点E(1)如图1,点D在线段CG上运动时,DF平分EDB若BAC100,C30,则AFD;若B40,则AFD;试探究AFD与B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,BDE的角平分线所在直线与射线AG交于点F试探究AFD与B之间的数量关系,并说明理由17模型与应用.(模型)(1)如图,已知ABCD,求证1MEN2360. (应用)(2)如图,已知ABCD,则1+2+3+4+5+6的度数为 如图,已知ABCD,则1+2+3
10、+4+5+6n的度数为 (3)如图,已知ABCD,AM1M2的角平分线M1 O与CMnMn1的角平分线MnO交于点O,若M1OMnm在(2)的基础上,求2+3+4+5+6n1的度数(用含m、n的代数式表示)18如图,在中,与的角平分线交于点.(1)若,则 ;(2)若,则 ;(3)若,与的角平分线交于点,的平分线与的平分线交于点,的平分线与的平分线交于点,则 .19如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”如图2,CAB和BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N试解答下列问题:(1)仔细观察,在图2中有 个以线段AC为边
11、的“8字形”;(2)在图2中,若B=96,C=100,求P的度数;(3)在图2中,若设C=,B=,CAP=CAB,CDP=CDB,试问P与C、B之间存在着怎样的数量关系(用、表示P),并说明理由;(4)如图3,则A+B+C+D+E+F的度数为 20已知在中,点在上,边在上,在中,边在直线上,;(1)如图1,求的度数;(2)如图2,将沿射线的方向平移,当点在上时,求度数;(3)将在直线上平移,当以为顶点的三角形是直角三角形时,直接写出度数【参考答案】一、解答题1(1);(2)不能,理由见解析【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长;(2)利用方程思想求出长方
12、形的长边,然后与正方形边长比较大小即可【详解】解:解析:(1);(2)不能,理由见解析【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长;(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可【详解】解:(1)正方形纸片的面积为,正方形的边长,故答案为:(2)不能;根据题意设长方形的长和宽分别为和长方形面积为:,解得:,长方形的长边为,他不能裁出【点睛】本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键2符合,理由见解析【分析】根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答
13、案【详解】解:符合,理由如下:设宽为b米,则长为1.5b米,由题意得,1.5bb解析:符合,理由见解析【分析】根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案【详解】解:符合,理由如下:设宽为b米,则长为1.5b米,由题意得,1.5bb=7350,b=70,或b=-70(舍去),即宽为70米,长为1.570=105米,100105110,647075,符合国际标准球场的长宽标准【点睛】本题考查算术平方根的意义,列出方程求出长和宽是得出正确答案的前提3(1)S=13,边长为 ;(2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积
14、,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案解析:(1)S=13,边长为 ;(2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案详解:解:(1)S=25-12=13, 边长为 ,(2)a=3,b= -3 原式=9+-3-=6点睛:本题主要考查的就是无理数的估算,属于中等难度的题型解决这个问题的关键就是根据正方形的面积得出边长4(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用【分析】(1)正方形边长=面积的算术平方根,周长=边长4,由此解答即可;
15、(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用【分析】(1)正方形边长=面积的算术平方根,周长=边长4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用【详解】解:(1)=20(m),420=80(m),答:原来正方形场地的周长为80m;(2)设这个长方形场地宽为3am,则长为5am由题意有:3a5a=300,解得:a=,3a表示长度,a0,a=,这个长方形场地的周长为 2(3a+5a)=16a=16(m),
16、80=165=1616,这些铁栅栏够用【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长5(1)4米 (2)见解析【分析】(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解解析:(1)4米 (2)见解析【分析】(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解:(1)正方形的面积是16平方米,正方形钢板的边长是米;(2)设长方形的长宽分别为米、米,则,长
17、方形长是米,而正方形的边长为4米,所以李师傅不能办到.【点睛】本题考查了算术平方根的实际应用,灵活的利用算术平方根表示正方形和长方形的边长是解题的关键.二、解答题6(1)49,(2)44,(3)OPQ=ORQ【分析】(1)根据OPA=QPB可求出OPA的度数;(2)由AOP=43,BQP=49可求出OPQ的度数,转化为(1)来解解析:(1)49,(2)44,(3)OPQ=ORQ【分析】(1)根据OPA=QPB可求出OPA的度数;(2)由AOP=43,BQP=49可求出OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:OPQ=AOP+BQP,ORQ=DOR+RQC,从而OPQ=ORQ
18、【详解】解:(1)OPA=QPB,OPQ=82,OPA=(180-OPQ)=(180-82)=49,(2)作PCm,mn,mPCn,AOP=OPC=43,BQP=QPC=49,OPQ=OPC+QPC=43+49=92,OPA=(180-OPQ)=(180-92)44,(3)OPQ=ORQ理由如下:由(2)可知:OPQ=AOP+BQP,ORQ=DOR+RQC,入射光线与平面镜的夹角等于反射光线与平面镜的夹角,AOP=DOR,BQP=RQC,OPQ=ORQ【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的7(1)证明见解析;(2)
19、证明见解析;(3)FBE35【分析】(1)根据平行线的性质得出ABFBFE,DCFEFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;解析:(1)证明见解析;(2)证明见解析;(3)FBE35【分析】(1)根据平行线的性质得出ABFBFE,DCFEFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;(3)由(1)的结论和三角形的角的关系解答即可【详解】证明:(1)ABCD,EFCD,ABEF,ABFBFE,EFCD,DCFEFC,BFCBFE+EFCABF+DCF;(2)BEEC,BEC90,EBC+BCE90,由(1)可得:BFCABE+ECD90,ABE+ECDEBC
20、+BCE,BE平分ABC,ABEEBC,ECDBCE,CE平分BCD;(3)设BCE,ECF,CE平分BCD,DCEBCE,DCFDCEECF,EFC,BFCBCF,BFCBCE+ECF+,ABFBFE2,FBG2ECF,FBG2,ABE+DCEBEC90,ABE90,GBEABEABFFBG9022,BE平分ABC,CBEABE90,CBGCBE+GBE,7090+9022,整理得:2+55,FBEFBG+GBE2+902290(2+)35【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答8(1)见解析;(2)见解析;(3)n-1【分析】(1)连接AB,根据已知证明MAB
21、+SBA=180,即可得证;(2)作CFST,设CBT=,表示出CAN,ACF,BCF,根据解析:(1)见解析;(2)见解析;(3)n-1【分析】(1)连接AB,根据已知证明MAB+SBA=180,即可得证;(2)作CFST,设CBT=,表示出CAN,ACF,BCF,根据ADBC,得到DAC=120,求出CAE即可得到结论;(3)作CFST,设CBT=,得到CBT=BCF=,分别表示出CAN和CAE,即可得到比值【详解】解:(1)如图,连接,(2),理由:作,则 如图,设,则,即(3)作,则 如图,设,则,故答案为【点睛】本题主要考查平行线的性质和判定,解题关键是角度的灵活转换,构建数量关系式
22、9(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OB解析:(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OBH=360,即可求出AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由NAO=116,得MAO=64,故MAE=,同理OBH=144,HB
23、F=nOBF,得FBH=,从而,又FKN=F+FAK,得,即可求n【详解】解:(1)如图:过O作OP/MN,MN/GHlMN/OP/GHNAO+POA=180,POB+OBH=180NAO+AOB+OBH=360NAO=116,OBH=144AOB=360-116-144=100;(2)分别延长AC、CD交GH于点E、F,AC平分且,又MN/GH,;,BD平分,又;(3)设FB交MN于K,则; ,在FAK中,,, 经检验:是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键10(1)见解析;(2)当点E在CA的延
24、长线上时,BED=D-B;当点E在AC的延长线上时,BED=BET-DET=B-D;(3)【分析】(1)如图1中,过点E作ETAB利用平行解析:(1)见解析;(2)当点E在CA的延长线上时,BED=D-B;当点E在AC的延长线上时,BED=BET-DET=B-D;(3)【分析】(1)如图1中,过点E作ETAB利用平行线的性质解决问题(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可(3)利用(1)中结论,可得BMD=ABM+CDM,BFD=ABF+CDF,由此解决问题即可【详解】解:(1)证明:如图1中,过点E
25、作ETAB由平移可得ABCD,ABET,ABCD,ETCDAB,B=BET,TED=D,BED=BET+DET=B+D(2)如图2-1中,当点E在CA的延长线上时,过点E作ETABABET,ABCD,ETCDAB,B=BET,TED=D,BED=DET-BET=D-B如图2-2中,当点E在AC的延长线上时,过点E作ETABABET,ABCD,ETCDAB,B=BET,TED=D,BED=BET-DET=B-D(3)如图,设ABE=EBM=x,CDE=EDM=y,ABCD,BMD=ABM+CDM,m=2x+2y,x+y=m,BFD=ABF+CDF,ABE=nEBF,CDE=nEDF,BFD=【点
26、睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型三、解答题11(1),;(2)1;(3)不变,值为2【分析】(1)根据绝对值和算术平方根的非负性,求得a,b的值,再利用中点坐标公式即可得出答案; (2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-解析:(1),;(2)1;(3)不变,值为2【分析】(1)根据绝对值和算术平方根的非负性,求得a,b的值,再利用中点坐标公式即可得出答案; (2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根据SODP=SODQ,列出关于t的方程,求得t的
27、值即可; (3)过H点作AC的平行线,交x轴于P,先判定OGAC,再根据角的和差关系以及平行线的性质,得出PHO=GOF=1+2,OHC=OHP+PHC=GOF+4=1+2+4,最后代入进行计算即可【详解】解:(1)+|b-2|=0, a-2b=0,b-2=0, 解得a=4,b=2, A(0,4),C(2,0) (2)存在, 理由:如图1中,D(1,2), 由条件可知:P点从C点运动到O点时间为2秒,Q点从O点运动到A点时间为2秒,0t2时,点Q在线段AO上, 即 CP=t,OP=2-t,OQ=2t,AQ=4-2t, SDOP=OPyD=(2-t)2=2-t,SDOQ=OQxD=2t1=t,
28、SODP=SODQ, 2-t=t, t=1 (3)结论:的值不变,其值为2理由如下:如图2中,2+3=90, 又1=2,3=FCO, GOC+ACO=180, OGAC, 1=CAO, OEC=CAO+4=1+4, 如图,过H点作AC的平行线,交x轴于P,则4=PHC,PHOG, PHO=GOF=1+2, OHC=OHP+PHC=GOF+4=1+2+4, =2【点睛】本题主要考查三角形综合题、非负数的性质、三角形的面积、平行线的性质等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题12(1)50;(2)A+C=30+,理由见解析;(3)A-DCM=30+或30-【分析】(1)过M
29、作MNAB,由平行线的性质即可求得M的值(2)延长BA,DC交于E,解析:(1)50;(2)A+C=30+,理由见解析;(3)A-DCM=30+或30-【分析】(1)过M作MNAB,由平行线的性质即可求得M的值(2)延长BA,DC交于E,应用四边形的内角和定理与平角的定义即可解决问题(3)分两种情形分别求解即可;【详解】解:(1)过M作MNAB,ABCD,ABMNCD,1=A,2=C,AMC=1+2=A+C=50;故答案为:50;(2)A+C=30+,延长BA,DC交于E,B+D=150,E=30,BAM+DCM=360-(EAM+ECM)=360-(360-E-M)=30+;即A+C=30+
30、;(3)如下图所示:延长BA、DC使之相交于点E,延长MC与BA的延长线相交于点F,B+D=150,AMC=,E=30由三角形的内外角之间的关系得:1=30+22=3+1=30+3+1-3=30+即:A-C=30+如图所示,210-A=(180-DCM)+,即A-DCM=30-综上所述,A-DCM=30+或30-【点睛】本题考查了平行线的性质解答该题时,通过作辅助线准确作出辅助线lAB,利用平行线的性质(两直线平行内错角相等)将所求的角M与已知角A、C的数量关系联系起来,从而求得M的度数13(1)2;(2)EFPQ,见解析;(3)NEFAMP,见解析【分析】1)如图,过点P作PRAB,可得AB
31、CDPR,进而可得结论;(2)根据已知条件可得2EPQ+2PEF解析:(1)2;(2)EFPQ,见解析;(3)NEFAMP,见解析【分析】1)如图,过点P作PRAB,可得ABCDPR,进而可得结论;(2)根据已知条件可得2EPQ+2PEF180,进而可得EF与PQ的位置关系;(3)结合(2)和已知条件可得QNEQEN,根据三角形内角和定理可得QNE(180NQE)(1803),可得NEF180QEFNQEQNE,进而可得结论【详解】解:(1)如图,过点P作PRAB,ABCD,ABCDPR,AMPMPR,PQNRPQ,MPQMPR+RPQ2;(2)如图,EFPQ,理由如下:PQ平分MPNMPQN
32、PQ2,QEPN,EQPNPQ2,EPQEQP2,EF平分PEQ,PEQ2PEF2QEF,EPQ+EQP+PEQ180,2EPQ+2PEF180,EPQ+PEF90,PFE1809090,EFPQ;(3)如图,NEFAMP,理由如下:由(2)可知:EQP2,EFQ90,QEF902,PQN,NQEPQN+EQP3,NE平分PNQ,PNEQNE,QEPN,QENPNE,QNEQEN,NQE3,QNE(180NQE)(1803),NEF180QEFNQEQNE180(902)3(1803)18090+2390+AMPNEFAMP【点睛】本题考查了平行线的性质,角平分线的性质,熟悉相关性质是解题的关
33、键14(1);(2),理由见解析;(3)【分析】(1)过点作,则,由平行线的性质可得的度数;(2)过点作的平行线,依据平行线的性质可得与,之间的数量关系;过作,依据平行线的性质可得,即解析:(1);(2),理由见解析;(3)【分析】(1)过点作,则,由平行线的性质可得的度数;(2)过点作的平行线,依据平行线的性质可得与,之间的数量关系;过作,依据平行线的性质可得,即可得到;(3)过和分别作的平行线,依据平行线的性质以及角平分线的定义,即可得到与,之间的数量关系为【详解】解:(1)如图1,过点作,则,由平行线的性质可得,又,故答案为:;(2)如图2,与,之间的数量关系为;过点P作PMFD,则PM
34、FDCG,PMFD,1=,PMCG,2=,1+2=+,即:,如图,与,之间的数量关系为;理由:过作,;(3)如图,由可知,N=3+4,EN平分DEP,AN平分PAC,3=,4=,与,之间的数量关系为【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论15(1)见解析;(2);见解析;(3)【分析】(1)过点作,根据平行线性质可得;(2)由(1)结论可得:,再根据角平分线性质可得;(3)由()结论可得:【详解】(1)证明:如图1,过解析:(1)见解析;(2);见解析;(3)【分析】(1)过点作,根据平行线性质可得;(2)由(1)结论可得:,再根据角平分线性
35、质可得;(3)由()结论可得:【详解】(1)证明:如图1,过点作,又,;(2)如图2,由(1)可得:,的平分线与的平分线相交于点,;(3)由()可得:,;【点睛】考核知识点:平行线性质和判定的综合运用熟练运用平行线性质和判定是关键四、解答题16(1)115;110;理由见解析;(2);理由见解析【分析】(1)若BAC=100,C=30,由三角形内角和定理求出B=50,由平行线的性质得出EDB=C=30,由解析:(1)115;110;理由见解析;(2);理由见解析【分析】(1)若BAC=100,C=30,由三角形内角和定理求出B=50,由平行线的性质得出EDB=C=30,由角平分线定义得出,由三
36、角形的外角性质得出DGF=100,再由三角形的外角性质即可得出结果;若B=40,则BAC+C=180-40=140,由角平分线定义得出,由三角形的外角性质即可得出结果;由得:EDB=C,由三角形的外角性质得出DGF=B+BAG,再由三角形的外角性质即可得出结论;(2)由(1)得:EDB=C,,由三角形的外角性质和三角形内角和定理即可得出结论【详解】(1)若BAC=100,C=30,则B=180-100-30=50,DEAC,EDB=C=30,AG平分BAC,DF平分EDB,DGF=B+BAG=50+50=100,AFD=DGF+FDG=100+15=115;若B=40,则BAC+C=180-4
37、0=140,AG平分BAC,DF平分EDB,DGF=B+BAG,AFD=DGF+FDG=B+BAG+FDG=故答案为:115;110;理由如下:由得:EDB=C,DGF=B+BAG,AFD=DGF+FDG=B+BAG+FDG=;(2)如图2所示:;理由如下:由(1)得:EDB=C,AHF=B+BDH,AFD=180-BAG-AHF【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键17(1)证明见解析;(2)900 ,180(n1);(3)(180n1802m) 【详解】【模型】(1)证明:过点E作EFCD,ABCD,
38、EFAB,1MEF解析:(1)证明见解析;(2)900 ,180(n1);(3)(180n1802m) 【详解】【模型】(1)证明:过点E作EFCD,ABCD,EFAB,1MEF180,同理2NEF18012MEN360 【应用】(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得1+2+3+4+5+6=1805=900;由上面的解题方法可得:1+2+3+4+5+6n=180(n1),故答案是:900 , 180(n1);(3)过点O作SRAB,ABCD,SRCD,AM1OM1OR同理C MnOMnORA M1OCMnOM1ORMnOR,A M1OCMnO
39、M1OMnm,M1O平分AM1M2,AM1M22A M1O,同理CMnMn-12CMnO,AM1M2CMnMn-12AM1O2CMnO2M1OMn2m,又A M1M22+3+4+5+6n1CMnMn-1180(n1),2+3+4+5+6n1(180n1802m)点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要18(1)110(2)(90 +n)(3)90+n【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是ABC与ACB的角平解析:(1)110(2)(90 +n)(3)90+n【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是ABC与ACB的角平分线