收藏 分销(赏)

2023年人教版七7年级下册数学期末解答题复习试卷附答案.doc

上传人:a199****6536 文档编号:1843324 上传时间:2024-05-10 格式:DOC 页数:36 大小:1.16MB
下载 相关 举报
2023年人教版七7年级下册数学期末解答题复习试卷附答案.doc_第1页
第1页 / 共36页
2023年人教版七7年级下册数学期末解答题复习试卷附答案.doc_第2页
第2页 / 共36页
2023年人教版七7年级下册数学期末解答题复习试卷附答案.doc_第3页
第3页 / 共36页
2023年人教版七7年级下册数学期末解答题复习试卷附答案.doc_第4页
第4页 / 共36页
2023年人教版七7年级下册数学期末解答题复习试卷附答案.doc_第5页
第5页 / 共36页
点击查看更多>>
资源描述

1、2023年人教版七7年级下册数学期末解答题复习试卷附答案一、解答题1如图1,用两个边长相同的小正方形拼成一个大的正方形(1)如图2,若正方形纸片的面积为1,则此正方形的对角线AC的长为 dm(2)如图3,若正方形的面积为16,李明同学想沿这块正方形边的方向裁出一块面积为12的长方形纸片,使它的长和宽之比为32,他能裁出吗?请说明理由2喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为,宽为,且两块纸片面积相等(1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号)(2)在长方形纸片上截出两个完整的正方形纸片,面积分别为和,亮亮认为两个正方形纸

2、片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?(参考数据:,)3如图,用两个边长为15的小正方形拼成一个大的正方形,(1)求大正方形的边长?(2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2?4如图,在33的方格中,有一阴影正方形,设每一个小方格的边长为1个单位请解决下面的问题(1)阴影正方形的面积是_?(可利用割补法求面积)(2)阴影正方形的边长是_?(3)阴影正方形的边长介于哪两个整数之间?请说明理由5求下图的方格中阴影部分正方形面积与边长二、解答题6已知直线AB/CD,点P、Q

3、分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12的速度旋转至PA便立即回转,并不断往返旋转;射线QC按逆时针方向每秒3旋转至QD停止,此时射线PB也停止旋转(1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB与QC的位置关系为 ;(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB/QC 7已知:如图(1)直线AB、CD被直线MN所截,12(1)求证:AB/CD;(2)如图(2),点E在AB,CD之间的直线MN上,P、Q分别在直线AB、CD上,连接PE、EQ,PF平分BPE,QF平分EQD,则PEQ和PFQ之间有什么数量关系,请直接写出你的结

4、论;(3)如图(3),在(2)的条件下,过P点作PH/EQ交CD于点H,连接PQ,若PQ平分EPH,QPF:EQF1:5,求PHQ的度数8如图1,MNPQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间(1)求证:CABMCA+PBA;(2)如图2,CDAB,点E在PQ上,ECNCAB,求证:MCADCE;(3)如图3,BF平分ABP,CG平分ACN,AFCG若CAB60,求AFB的度数9如图,已知直线射线,是射线上一动点,过点作交射线于点,连接作,交直线于点,平分(1)若点,都在点的右侧求的度数;若,求的度数(不能使用“三角形的内角和是”直接解题)(2)在点的运动过程中,是否存在这

5、样的偕形,使?若存在,直接写出的度数;若不存在请说明理由10如图1,把一块含30的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上(1)根据图1填空:1 ,2 ;(2)现把三角板绕B点逆时针旋转n如图2,当n25,且点C恰好落在DG边上时,求1、2的度数;当0n180时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由三、解答题11已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E,F点,且(1)将直角如图1位置摆放,如果,则_;(2)将直角如图2位置摆放,N为上一点,请写出与

6、之间的等量关系,并说明理由; (3)将直角如图3位置摆放,若,延长交直线b于点Q,点P是射线上一动点,探究与的数量关系,请直接写出结论12为了安全起见在某段铁路两旁安置了两座可旋转探照灯如图1所示,灯射线从开始顺时针旋转至便立即回转,灯射线从开始顺时针旋转至便立即回转,两灯不停交又照射巡视若灯转动的速度是每秒2度,灯转动的速度是每秒1度假定主道路是平行的,即,且(1)填空:_;(2)若灯射线先转动30秒,灯射线才开始转动,在灯射线到达之前,灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯射线到达之前若射出的光束交于点,过作交于点,且,则在转动过程中,请探究与的数量关系是否发生

7、变化?若不变,请求出其数量关系;若改变,请说明理由13问题情境(1)如图1,已知,求的度数佩佩同学的思路:过点作,进而,由平行线的性质来求,求得 ;问题迁移(2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合与相交于点,有一动点在边上运动,连接,记如图2,当点在两点之间运动时,请直接写出与之间的数量关系;如图3,当点在两点之间运动时,与之间有何数量关系?请判断并说明理由14已知直线,M,N分别为直线,上的两点且,P为直线上的一个动点类似于平面镜成像,点N关于镜面所成的镜像为点Q,此时(1)当点P在N右侧时:若镜像Q点刚好落在直线上(如图1),判断直线与直线的位

8、置关系,并说明理由;若镜像Q点落在直线与之间(如图2),直接写出与之间的数量关系;(2)若镜像,求的度数15已知:如图1,点,分别为,上一点(1)在,之间有一点(点不在线段上),连接,探究,之间有怎样的数量关系,请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明(2)如图2,在,之两点,连接,请选择一个图形写出,存在的数量关系(不需证明)四、解答题16(1)如图1,BAD的平分线AE与BCD的平分线CE交于点E,ABCD,ADC=50,ABC=40,求AEC的度数;(2)如图2,BAD的平分线AE与BCD的平分线CE交于点E,ADC=,ABC=,求AEC的度数;(3)如图3,PQM

9、N于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由17如图,将一副直角三角板放在同一条直线AB上,其中ONM30,OCD45(1)将图中的三角板OMN沿BA的方向平移至图的位置,MN与CD相交于点E,求CEN的度数;(2)将图中的三角板OMN绕点O按逆时针方向旋转,使BON30,如图,MN与CD相交于点E,求CEN的度数;(3)将图中的三角板OMN绕点O按每秒30的速度按逆时针方向旋转一周,在旋转的过程中,在第_秒时,直线MN恰好与直线CD垂直(直接写出结果)18RtABC中,C=90,点D、E分别是

10、ABC边AC、BC上的点,点P是一动点.令PDA=1,PEB=2,DPE=.(1)若点P在线段AB上,如图(1)所示,且=50,则1+2= ;(2)若点P在边AB上运动,如图(2)所示,则、1、2之间的关系为: ;(3)若点P运动到边AB的延长线上,如图(3)所示,则、1、2之间有何关系?猜想并说明理由. (4)若点P运动到ABC形外,如图(4)所示,则、1、2之间的关系为:.19已知ABCD,点E是平面内一点,CDE的角平分线与ABE的角平分线交于点F(1)若点E的位置如图1所示 若ABE=60,CDE=80,则F= ; 探究F与BED的数量关系并证明你的结论; (2)若点E的位置如图2所示

11、,F与BED满足的数量关系式是 (3)若点E的位置如图3所示,CDE 为锐角,且,设F=,则的取值范围为 20已知,点为射线上一点(1)如图1,写出、之间的数量关系并证明;(2)如图2,当点在延长线上时,求证:;(3)如图3,平分,交于点,交于点,且:,求的度数【参考答案】一、解答题1(1);(2)不能,理由见解析【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长;(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可【详解】解:解析:(1);(2)不能,理由见解析【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长;(2)利用方

12、程思想求出长方形的长边,然后与正方形边长比较大小即可【详解】解:(1)正方形纸片的面积为,正方形的边长,故答案为:(2)不能;根据题意设长方形的长和宽分别为和长方形面积为:,解得:,长方形的长边为,他不能裁出【点睛】本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键2(1);(2)不同意,理由见解析【分析】(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个解析:(1);(2)不同意,理由见解析【分析】(1)设正方形边长为,根据两块纸片面积相等

13、列出方程,再根据算术平方根的意义即可求出x的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答【详解】解:(1)设正方形边长为,则,由算术平方根的意义可知,所以正方形的边长是(2)不同意因为:两个小正方形的面积分别为和,则它们的边长分别为和,即两个正方形边长的和约为,所以,即两个正方形边长的和大于长方形的长,所以不能在长方形纸片上截出两个完整的面积分别为和的正方形纸片【点睛】本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念3(1)30;(2)不能.【解析】【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;

14、(2)先求出长方形的边长,再判断即可【详解】解:(1)大正方形的面积是: 大正解析:(1)30;(2)不能.【解析】【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可【详解】解:(1)大正方形的面积是: 大正方形的边长是: 30;(2)设长方形纸片的长为4xcm,宽为3xcm,则4x3x720,解得:x ,4x 30,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2故答案为(1)30;(2)不能.【点睛】本题考查算术平方根,解题的关键是能根据题意列出算式4(1)5;(2);(3)2与3两

15、个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解【详解】(1)阴影正方形的解析:(1)5;(2);(3)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解【详解】(1)阴影正方形的面积是33-4=5故答案为:5;(2)设阴影正方形的边长为x,则x2=5x=(-舍去)故答案为:;(3)阴影正方形的边长介于2与3两个整数之间【点睛】本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法通过观察可知阴影部分的面积是5个小正方形的面积

16、和会利用估算的方法比较无理数的大小58;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可【详解】解:正方形面积=44-422=8;正方形的边解析:8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可【详解】解:正方形面积=44-422=8;正方形的边长=【点睛】本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根记为二、解答题6(1)PBQC;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB

17、QC【分析】(1)求出旋转10秒时,BPB和CQC的度数,设PB与QC交于O,过O作OEAB,根解析:(1)PBQC;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【分析】(1)求出旋转10秒时,BPB和CQC的度数,设PB与QC交于O,过O作OEAB,根据平行线的性质求得POE和QOE的度数,进而得结论;(2)分三种情况:当0t15时,当15t30时,当30t45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间【详解】解:(1)如图1,当旋转时间30秒时,由已知得BPB1012120,CQC310=30,过O作OEAB,ABCD,ABOECD,POE180BPB

18、60,QOECQC30,POQ90,PBQC,故答案为:PBQC;(2)当0t15时,如图,则BPB12t,CQC45+3t,ABCD,PBQC,BPBPECCQC,即12t45+3t,解得,t5; 当15t30时,如图,则APB12t180,CQC3t+45,ABCD,PBQC,BPBBEQCQC,即12t18045+3t,解得,t25;当30t45时,如图,则BPB12t360,CQC3t+45,ABCD,PBQC,BPBBEQCQC,即12t36045+3t,解得,t45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【点睛】本题主要考查了平行线的性质,第(1)题关键是作平

19、行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题7(1)见解析;(2)PEQ+2PFQ360;(3)30【分析】(1)首先证明13,易证得AB/CD;(2)如图2中,PEQ+2PFQ360作EH/AB理由平行线解析:(1)见解析;(2)PEQ+2PFQ360;(3)30【分析】(1)首先证明13,易证得AB/CD;(2)如图2中,PEQ+2PFQ360作EH/AB理由平行线的性质即可证明;(3)如图3中,设QPFy,PHQxEPQz,则EQFFQH5y,想办法构建方程即可解决问题;【详解】(1)如图1中,23,12,13,AB/CD(2)结论:如图2中,PEQ+2PFQ360理由:作

20、EH/ABAB/CD,EH/AB,EH/CD,12,34,2+31+4,PEQ1+4,同法可证:PFQBPF+FQD,BPE2BPF,EQD2FQD,1+BPE180,4+EQD180,1+4+EQD+BPE2180,即PEQ+2(FQD+BPF)=360,PEQ+2PFQ360(3)如图3中,设QPFy,PHQxEPQz,则EQFFQH5y,EQ/PH,EQCPHQx,x+10y180,AB/CD,BPHPHQx,PF平分BPE,EPQ+FPQFPH+BPH,FPHy+zx,PQ平分EPH,Zy+y+zx,x2y,12y180,y15,x30,PHQ30【点睛】本题考查了平行线的判定与性质,

21、角平分线的定义等知识(2)中能正确作出辅助线是解题的关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题的关键8(1)证明见解析;(2)证明见解析;(3)120【分析】(1)过点A作ADMN,根据两直线平行,内错角相等得到MCADAC,PBADAB,根据角的和差等量代换即可得解;(2)解析:(1)证明见解析;(2)证明见解析;(3)120【分析】(1)过点A作ADMN,根据两直线平行,内错角相等得到MCADAC,PBADAB,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到、CAB+ACD180,由邻补角定义得到ECM+ECN180,再等量代换即可得解;(3)由平行线的

22、性质得到,FAB120GCA,再由角平分线的定义及平行线的性质得到GCAABF60,最后根据三角形的内角和是180即可求解【详解】解:(1)证明:如图1,过点A作ADMN,MNPQ,ADMN,ADMNPQ,MCADAC,PBADAB,CABDAC+DABMCA+PBA,即:CABMCA+PBA;(2)如图2,CDAB,CAB+ACD180,ECM+ECN180,ECNCABECMACD,即MCA+ACEDCE+ACE,MCADCE;(3)AFCG,GCA+FAC180,CAB60即GCA+CAB+FAB180,FAB18060GCA120GCA,由(1)可知,CABMCA+ABP,BF平分AB

23、P,CG平分ACN,ACN2GCA,ABP2ABF,又MCA180ACN,CAB1802GCA+2ABF60,GCAABF60,AFB+ABF+FAB180,AFB180FABFBA180(120GCA)ABF180120+GCAABF120【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键9(1)35;(2)55;(2)存在,或【分析】(1)依据平行线的性质以及角平分线的定义,即可得到PCG的度数;依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=20解析:(1)35;(2)55;(2)存在,或【分析】(1)依据平行线的性质以及角平分线的定义,

24、即可得到PCG的度数;依据平行线的性质以及角平分线的定义,即可得到ECG=GCF=20,再根据PQCE,即可得出CPQ=ECP=60;(2)设EGC=3x,EFC=2x,则GCF=3x-2x=x,分两种情况讨论:当点G、F在点E的右侧时,当点G、F在点E的左侧时,依据等量关系列方程求解即可【详解】解:(1)ABCD,CEB+ECQ=180,CEB=110,ECQ=70,PCF=PCQ,CG平分ECF,PCGPCF+FCGQCF+FCEECQ35;ABCD,QCG=EGC,QCG+ECG=ECQ=70,EGC+ECG=70,又EGC-ECG=30,EGC=50,ECG=20,ECG=GCF=20

25、,PCFPCQ(7040)15,PQCE,CPQ=ECP=ECQ-PCQ=70-15=55(2)52.5或7.5,设EGC=3x,EFC=2x,当点G、F在点E的右侧时,ABCD,QCG=EGC=3x,QCF=EFC=2x,则GCF=QCG-QCF=3x-2x=x,PCFPCQFCQEFCx,则ECG=GCF=PCF=PCD=x,ECD=70,4x=70,解得x=17.5,CPQ=3x=52.5;当点G、F在点E的左侧时,反向延长CD到H,EGC=3x,EFC=2x,GCH=EGC=3x,FCH=EFC=2x,ECG=GCF=GCH-FCH=x,CGF=180-3x,GCQ=70+x,180-

26、3x=70+x,解得x=27.5,FCQ=ECF+ECQ=27.52+70=125,PCQFCQ62.5,CPQ=ECP=62.5-55=7.5,【点睛】本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键10(1)120,90;(2)1=120-n,2=90+n;见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)根据邻补角的定义求出ABE,再根据两直线平行,同位角相解析:(1)120,90;(2)1=120-n,2=90+n;见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)根据邻补角的定义求出ABE,再根据两直线平行,同位角相

27、等可得1=ABE,根据两直线平行,同旁内角互补求出BCG,然后根据周角等于360计算即可得到2;结合图形,分AB、BC、AC三条边与直尺垂直讨论求解【详解】解:(1)1=180-60=120,2=90;故答案为:120,90;(2)如图2,ABC=60,ABE=180-60-n=120-n,DGEF, 1=ABE=120-n,BCG=180-CBF=180-n,ACB+BCG+2=360,2=360-ACB-BCG=360-90-(180-n)=90+n;当n=30时,ABC=60,ABF=30+60=90,ABDG(EF);当n=90时,C=CBF=90,BCDG(EF),ACDE(GF);

28、当n=120时,ABDE(GF)【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键三、解答题11(1)146;(2)AOG+NEF=90;(3)见解析【分析】(1)作CP/a,则CP/a/b,根据平行线的性质求解(2)作CP/a,由平行线的性质及等量代换得AOG+N解析:(1)146;(2)AOG+NEF=90;(3)见解析【分析】(1)作CP/a,则CP/a/b,根据平行线的性质求解(2)作CP/a,由平行线的性质及等量代换得AOG+NEF=ACP+PCB=90(3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过

29、点P作a,b的平行线求解【详解】解:(1)如图,作CP/a,a/b,CP/a,CP/a/b,AOG=ACP=56,BCP+CEF=180,BCP=180-CEF,ACP+BCP=90,AOG+180-CEF=90,CEF=180-90+AOG=146(2)AOG+NEF=90.理由如下:如图,作CP/a,则CP/a/b,AOG=ACP,BCP+CEF=180,NEF+CEF=180,BCP=NEF,ACP+BCP=90,AOG+NEF=90(3)如图,当点P在GF上时,作PN/a,连接PQ,OP,则PN/a/b,GOP=OPN,PQF=NPQ,OPQ=OPN+NPQ=GOP+PQF,GOC=G

30、OP+POQ=135,GOP=135-POQ,OPQ=135-POQ+PQF如图,当点P在GF延长线上时,作PN/a,连接PQ,OP,则PN/a/b,GOP=OPN,PQF=NPQ,OPN=OPQ+QPN,GOP=OPQ+PQF,135-POQ=OPQ+PQF【点睛】本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解12(1)72;(2)30秒或110秒;(3)不变,BAC=2BCD【分析】(1)根据BAM+BAN=180,BAM:BAN=3:2,即可得到BAN的度数;(2)设A灯转动t秒,解析:(1)72;(2)30秒或110秒;(3)不变,BAC

31、=2BCD【分析】(1)根据BAM+BAN=180,BAM:BAN=3:2,即可得到BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0t90时,根据2t=1(30+t),可得 t=30;当90t150时,根据1(30+t)+(2t-180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据BAC=2t-108,BCD=126-BCA=t-54,即可得出BAC:BCD=2:1,据此可得BAC和BCD关系不会变化【详解】解:(1)BAM+BAN=180,BAM:BAN=3:2,BAN=180=72,故答案为:72;(2)设A灯转动t秒,两灯的光束互相平行,

32、当0t90时,如图1,PQMN,PBD=BDA,ACBD,CAM=BDA,CAM=PBD2t=1(30+t),解得 t=30;当90t150时,如图2,PQMN,PBD+BDA=180,ACBD,CAN=BDAPBD+CAN=1801(30+t)+(2t-180)=180,解得 t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)BAC和BCD关系不会变化理由:设灯A射线转动时间为t秒,CAN=180-2t,BAC=72-(180-2t)=2t-108,又ABC=108-t,BCA=180-ABC-BAC=180-t,而ACD=126,BCD=126-BCA=126-(1

33、80-t)=t-54,BAC:BCD=2:1,即BAC=2BCD,BAC和BCD关系不会变化【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补13(1)80;(2);【分析】(1)过点P作PGAB,则PGCD,由平行线的性质可得BPC的度数;(2)过点P作FD的平行线,依据平行线的性质可得APE与,之间的数量关系;解析:(1)80;(2);【分析】(1)过点P作PGAB,则PGCD,由平行线的性质可得BPC的度数;(2)过点P作FD的平行线,依据平行线的性质可得APE与,之间的数量关系;过

34、P作PQDF,依据平行线的性质可得=QPA,=QPE,即可得到APE=APQ-EPQ=-【详解】解:(1)过点P作PGAB,则PGCD,由平行线的性质可得B+BPG=180,C+CPG=180,又PBA=125,PCD=155,BPC=360-125-155=80,故答案为:80;(2)如图2,过点P作FD的平行线PQ,则DFPQAC,=EPQ,=APQ,APE=EPQ+APQ=+,APE与,之间的数量关系为APE=+;如图3,APE与,之间的数量关系为APE=-;理由:过P作PQDF,DFCG,PQCG,=QPA,=QPE,APE=APQ-EPQ=-【点睛】本题主要考查了平行线的性质,解决问

35、题的关键是过拐点作平行线,利用平行线的性质得出结论14(1),证明见解析,(2)或【分析】(1) 根据和镜像证出,即可判断直线与直线的位置关系,过点Q作QFCD,根据平行线的性质证即可;(2)过点Q作QFCD,根据点P的位置不同,解析:(1),证明见解析,(2)或【分析】(1) 根据和镜像证出,即可判断直线与直线的位置关系,过点Q作QFCD,根据平行线的性质证即可;(2)过点Q作QFCD,根据点P的位置不同,分类讨论,依据平行线的性质求解即可【详解】(1),证明:,;过点Q作QFCD,;(2)如图,当点P在N右侧时,过点Q作QFCD,同(1)得,如图,当点P在N左侧时,过点Q作QFCD,同(1

36、)得,同理可得,;综上,的度数为或【点睛】本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系15(1)见解析;(2)见解析【分析】(1)过点M作MPAB根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论【详解】解:(1)EMF=AEM+MFCAEM+E解析:(1)见解析;(2)见解析【分析】(1)过点M作MPAB根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论【详解】解:(1)EMF=AEM+MFCAEM+EMF+MFC=360证明:过点M作MPABABCD,MPCD4=3MPAB,1=2EMF=2+3,EMF=1+4EM

37、F=AEM+MFC;证明:过点M作MQABABCD,MQCDCFM+1=180;MQAB,AEM+2=180CFM+1+AEM+2=360EMF=1+2,AEM+EMF+MFC=360;(2)如图2第一个图:EMN+MNF-AEM-NFC=180;过点M作MPAB,过点N作NQAB,AEM=1,CFN=4,MPNQ,2+3=180,EMN=1+2,MNF=3+4,EMN+MNF=1+2+3+4,AEM+CFN=1+4,EMN+MNF-AEM-NFC=1+2+3+4-1-4=2+3=180;如图2第二个图:EMN-MNF+AEM+NFC=180过点M作MPAB,过点N作NQAB,AEM+1=18

38、0,CFN=4,MPNQ,2=3,EMN=1+2,MNF=3+4,EMN-MNF=1+2-3-4,AEM+CFN=180-1+4,EMN-MNF+AEM+NFC=1+2-3-4+180-1+4=180【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键四、解答题16(1)E=45;(2)E=;(3)不变化,【分析】(1)由三角形内角和定理,可得D+ECD=E+EAD,B+EAB=E+ECB,由角平分线的性质,可得ECD=ECB=解析:(1)E=45;(2)E=;(3)不变化,【分析】(1)由三角形内角和定理,可得D+ECD=E+EAD,B+EAB=E+ECB,由角平分线的性质,可得ECD=ECB=BCD,EAD=EAB=BAD,则可得E= (D+B),继而求得答案;(2)首先延长BC交AD于点F,由三角形外角的性质,可得BCD=B+BAD+D,又由角平分线的性质,即可求得答案(3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案【详解】解:(1)CE平分BCD,AE平分BAD ECD=ECB=BCD,EAD=EAB=BAD, D+ECD=E+EAD,B+EAB=E+ECB, D+ECD+B+EAB=E+EAD+E+ECB D+B=2E, E=(D+B), ADC=50,ABC=40, AEC= (50+40)=45;(2

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服