1、八年级上册压轴题强化数学综合检测试卷1已知:AD为ABC的中线,分别以AB和AC为一边在ABC的外部作等腰三角形ABE和等腰三角形ACF,且AEAB,AFAC,连接EF,EAF+BAC180(1)如图1,若ABE65,ACF75,求BAC的度数(2)如图1,求证:EF2AD(3)如图2,设EF交AB于点G,交AC于点R,FC与EB交于点M,若点G为EF中点,且BAE60,请探究GAF和CAF的数量关系,并证明你的结论2已知点A在x轴正半轴上,以OA为边作等边OAB,A(x,0),其中x是方程的解(1)求点A的坐标;(2)如图1,点C在y轴正半轴上,以AC为边在第一象限内作等边ACD,连DB并延
2、长交y轴于点E,求的度数;(3)如图2,点F为x轴正半轴上一动点,点F在点A的右边,连接FB,以FB为边在第一象限内作等边FBG,连GA并延长交y轴于点H,当点F运动时,的值是否发生变化?若不变,求其值;若变化,求出其变化的范围3等边中,点、分别在边、上,且,连接、交于点(1)如图1,求的度数;图1(2)连接,若,求的值;(3)如图2,若点为边的中点,连接,且,则的大小是_图24阅读下列材料,完成相应任务数学活动课上,老师提出了如下问题:如图1,已知中,是边上的中线求证:智慧小组的证法如下:证明:如图2,延长至,使,是边上的中线在和中(依据一)在中,(依据二)任务一:上述证明过程中的“依据1”
3、和“依据2”分别是指:依据1:_;依据2:_归纳总结:上述方法是通过延长中线,使,构造了一对全等三角形,将,转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”“倍长中线法”多用于构造全等三角形和证明边之间的关系任务二:如图3,则的取值范围是_;任务三:如图4,在图3的基础上,分别以和为边作等腰直角三角形,在中,;中,连接试探究与的数量关系,并说明理由5如图,已知中,点是的中点,如果点在线段上以的速度由点向点移动,同时点在线段上由点向点以的速度移动,若、同时出发,当有一个点移动到点时,、都停止运动,设、移动时间为(1)求的取值范围(2)当时,问与是否全等,并说明理由(3)时,若为等腰三
4、角形,求的值6以点为顶点作等腰,等腰,其中,如图1所示放置,使得一直角边重合,连接、(1)试判断、的数量关系,并说明理由;(2)延长交于点试求的度数;(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由7已知ABC中,BAC=60,以AB和BC为边向外作等边ABD和等边BCE(1)连接AE、CD,如图1,求证:AE=CD;(2)若N为CD中点,连接AN,如图2,求证:CE=2AN(3)若ABBC,延长AB交DE于M,DB=,如图3,则BM=_(直接写出结果)8如图,和中,边与边交于点(不与点,重合),点,在异侧,为与的角平分线的交点(1)求证:;(2)设,请用含
5、的式子表示,并求的最大值;(3)当时,的取值范围为,求出,的值【参考答案】2(1)BAC50(2)见解析(3)GAFCAF60,理由见解析【分析】(1)利用三角形的内角和定理求出EAB,CAF,再根据EAF+BAC180构建方程即可解解析:(1)BAC50(2)见解析(3)GAFCAF60,理由见解析【分析】(1)利用三角形的内角和定理求出EAB,CAF,再根据EAF+BAC180构建方程即可解决问题;(2)延长AD至H,使DHAD,连接BH,想办法证明ABHEAF即可解决问题;(3)结论:GAFCAF60想办法证明ACDFAG,推出ACDFAG,再证明BCF150即可(1)解:AEAB,AE
6、BABE65,EAB50,ACAF,ACFAFC75,CAF30,EAF+BAC180,EAB+2ABC+FAC180,50+2BAC+30180,BAC50(2)证明:证明:如图,延长AD至点H,使DH=AD,连接BHAD是ABC的中线,BD=DC,又DH=AD,BDH=ADCADCHDB(SAS),BH=AC,BHD=DAC,BH=AF,BHD=DAC,BHAC,BAC+ABH=180,又EAF+BAC=180,ABH=EAF,又AB=AE,BH=AF,AEFBAH(SAS),EF=AH=2AD,EF2AD;(3)结论:GAFCAF60理由:由(2)得,ADEF,又点G为EF中点,EGAD
7、,由(2)AEFBAH,AEG=BAD,在EAG和ABD中,EAGABD,EAGABC60,AG=BD,AEB是等边三角形,AG=CD,ABE60,CBM60,在ACD和FAG中,ACDFAG,ACDFAG,ACAF,ACFAFC,在四边形ABCF中,ABC+BCF+CFA+BAF360,60+2BCF360,BCF150,BCA+ACF150,GAF+(180CAF)150,GAFCAF60【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题3(1);(2);(3)的值是定值,9【分析】(1)先求
8、出方程的解为,即可求解;(2)由“SAS”可证CAODAB,可得DBACOA90,由四边形内角和定理可求解;(3)解析:(1);(2);(3)的值是定值,9【分析】(1)先求出方程的解为,即可求解;(2)由“SAS”可证CAODAB,可得DBACOA90,由四边形内角和定理可求解;(3)由“SAS”可证ABGOBF可得OFAG,BAGBOF60,可求OAH60,可得AH6,即可求解【详解】解:(1)是方程的解解得:,检验当时,是原方程的解,点;(2)ACD,ABO是等边三角形,AOAB,ADAC,BAOCAD60,CAOBAD,且AOAB,ADAC,CAODAB(SAS)DBACOA90,AB
9、E90,AOEABEOABBEO360,BEO120;(3)GHAF的值是定值,理由如下:ABC,BFG是等边三角形,BOABAO3,FBBG,BOAABOFBG60,OBFABG,且OBAB,BFBG,ABGOBF(SAS),OFAG,BAGBOF60,AGOFOAAF3AF,OAH180OABBAG,OAH60,且AOH90,OA3,AH6,GHAFAHAGAF63AFAF9【点睛】本题是三角形综合题,考查了分式方程的解法,等边三角形性质,全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力4(1);(2);(3)【分析】(1)由是等边三角形,可得出,再利用,可证,得出,由可求
10、出,最后由补角定义求出.(2)在上取点,使,由可证,再利用,可证明,进而求出,再用补角的性质得知,在解析:(1);(2);(3)【分析】(1)由是等边三角形,可得出,再利用,可证,得出,由可求出,最后由补角定义求出.(2)在上取点,使,由可证,再利用,可证明,进而求出,再用补角的性质得知,在中利用外角的性质可求出,进而证出为等腰三角形,最后可证出即可求解.(3)延长至,使为等边三角形,延长交于,可得出,进而得出,利用角的和差得出,则证出,进而证出,再利用,证出为等边三角形,进而证出.【详解】(1)是等边三角形,在和中,(2)在上取点,使由(1)知,又,在和中,(3)提示:目测即得答案详细理由如
11、下:由(1)知延长至,使为等边三角形延长交于 ,在和中, ,, 在和中, ,为等边三角形, 【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等边三角形的判定和性质,熟练掌握全等三角形的判定和性质及等边三角形的判定和性质是解题的关键.5任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析【分析】任务一:依据1:根据全等的判解析:任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,
12、见解析【分析】任务一:依据1:根据全等的判定方法判断即可;依据2:根据三角形三边关系判断;任务二:可根据任务一的方法直接证明即可;任务三:根据任务一的方法,延长中线构造全等三角形证明线段关系即可【详解】解:任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边任务二:任务三:EF=2AD理由如下:如图延长AD至G,使DG=AD,AD是BC边上的中线BD=CD在ABD和CGD中ABDCGDAB=CG,ABD=GCD 又AB=AEAE=CG在ABC中,ABC+BAC+ACB=180,GCD+BAC+ACB=180又BAE=90,CAF
13、=90EAF+BAC=360-(BAE+CAF)=180EAF=GCD在EAF和GCA中EAFGCA EF=AGEF=2AD【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,倍长中线法,构造全等三角形是解本题的关键6(1);(2)时,与全等,证明见解析;(3)当或时,为等腰三角形【分析】(1)由题意根据图形点的运动问题建立不等式组,进行分析求解即可;(2)根据题意利用全等三角形的判定定理(SAS),进行解析:(1);(2)时,与全等,证明见解析;(3)当或时,为等腰三角形【分析】(1)由题意根据图形点的运动问题建立不等式组,进行分析求解即可;(2)根据题意利用全等三角形的判定定理(
14、SAS),进行分析求证即可;(3)根据题意分和以及三种情况,根据等腰三角形的性质进行分析计算.【详解】(1)依题意,.(2)时,与全等,证明:时,在和中,点是的中点,(SAS).(3)当时,有;当时,有,(舍去);当时,有,;综上,当或时,为等腰三角形.【点睛】本题考查等腰三角形相关的动点问题,熟练掌握等腰三角形的性质和全等三角形的判定以及相似三角形的判定与性质并运用数形结合的思维将动点问题转化为代数问题进行分析是解题的关键.7(1)BD=CE,理由见解析;(2)90;(3)成立,理由见解析.【分析】(1)根据等腰直角三角形的性质得到AB=AC,BAD=EAC=90,AD=AE,利用“SAS”
15、可证明ADB解析:(1)BD=CE,理由见解析;(2)90;(3)成立,理由见解析.【分析】(1)根据等腰直角三角形的性质得到AB=AC,BAD=EAC=90,AD=AE,利用“SAS”可证明ADBAEC,则BD=CE;(2)由ADBAEC得到ACE=DBA,利用三角形内角和定理可得到BFC=180-ACE-CDF=180-DBA-BDA=DAB=90;(3)与(1)一样可证明ADBAEC,得到BD=CE,ACE=DBA,利用三角形内角和定理得到BFC=DAB=90【详解】(1)ABC、ADE是等腰直角三角形,AB=AC,BAD=EAC=90,AD=AE,在ADB和AEC中,ADBAEC(SA
16、S),BD=CE;(2)ADBAEC,ACE=ABD,而在CDF中,BFC=180-ACE-CDF,又CDF=BDA,BFC=180-DBA-BDA=DAB=90;(3)BD=CE成立,且两线段所在直线互相垂直,即BFC=90理由如下:ABC、ADE是等腰直角三角形,AB=AC,AD=AE,BAC=EAD=90,BAC+CAD=EAD+CAD,BAD=CAE,在ADB和AEC中,ADBAEC(SAS),BD=CE,ACE=DBA,BFC=DAB=90【点睛】本题考查全等三角形的判定与性质.判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,熟知判定方法并根据题目条件选择合适的
17、方法进行解答8(1)见解析(2)见解析(3)【分析】(1)先判断出DBC=ABE,进而判断出DBCABE,即可得出结论;(2)先判断出ADNFCN,得出CF=AD,NCF=AN解析:(1)见解析(2)见解析(3)【分析】(1)先判断出DBC=ABE,进而判断出DBCABE,即可得出结论;(2)先判断出ADNFCN,得出CF=AD,NCF=AND,进而判断出BAC=ACF,即可判断出ABCCFA,即可得出结论;(3)先判断出ABCHEB(ASA),得出,再判断出ADMHEM (AAS),得出AM=HM,即可得出结论(1)解:ABD和BCE是等边三角形,BD=AB,BC=BE,ABD=CBE=60
18、,ABD+ABC=CBE+ABC,DBC=ABE,ABEDBC(SAS),AE=CD;(2)解:如图,延长AN使NF=AN,连接FC,N为CD中点,DN=CN,AND=FNC,ADNFCN(SAS),CF=AD,NCF=AND,DAB=BAC=60ACD +ADN=60ACF=ACD+NCF=60,BAC=ACF,ABD是等边三角形,AB=AD,AB=CF,AC=CA,ABCCFA (SAS),BC=AF,BCE是等边三角形,CE=BC=AF=2AN;(3)解: ABD是等边三角形,BAD=60,在RtABC中,ACB=90BAC=30,如图,过点E作EH / AD交AM的延长线于H,H=BA
19、D=60,BCE是等边三角形,BC=BE,CBE=60,ABC=90,EBH=90CBE=30=ACB,BEH=180EBHH=90=ABC,ABCHEB (ASA),AD=EH,AMD=HME,ADMHEM (AAS),AM=HM,故答案为:【点睛】此题是三角形综合题,主要考查了等边三角形的性质,含30角的直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键9(1)见解析(2),3(3)m105,n150【分析】(1)由条件易证,得,即可得证(2)PDAD-AP6-x,点P在线段BC上且不与B、C重合时, AP有最小值,即AD解析:(1)见解析(2),3(3)m105,n150【分析】(1)由条件易证,得,即可得证(2)PDAD-AP6-x,点P在线段BC上且不与B、C重合时, AP有最小值,即ADBC时AP的长度,此时PD可得最大值(3)为与的角平分线的交点,应用“三角形内角和等于180”及角平分线定义,即可表示出,从而得到m,n的值(1)解:在和中,如图1即(2)解:当ADBC时,APAB3最小,即PD633为PD的最大值(3)解:如图2,设则 为与的角平分线的交点即【点睛】本题是一道几何综合题,考查了点到直线的距离垂线段最短,30的角所对的直角边等于斜边的一半,全等三角形的判定和性质,角平分线定义等,解题关键是将PD最大值转化为PA的最小值