资源描述
八年级下册数学期末试卷检测(提高,Word版含解析)
一、选择题
1.要使等式=0成立的x的值为( )
A.3 B.﹣1 C.3或﹣1 D.以上都不对
2.以长度分别为下列各组数的线段为边,其中能构成直角三角形的是( )
A.4,5,6 B.1,1,2 C.6,8,10 D.5,12,14
3.四边形ABCD的对角线AC和BD相交于点O,下列判断正确的是( )
A.若AO=OC,则ABCD是平行四边形
B.若AC=BD,则ABCD是平行四边形
C.若AO=BO,CO=DO,则ABCD是平行四边形
D.若AO=OC,BO=OD,则ABCD是平行四边形
4.小明最近次数学测验的成绩如下:,,,,.则这次成绩的方差为( )
A. B. C. D.
5.三角形的三边长分别为6,8,10,则它的最长边上的高为( )
A.4.8 B.8 C.6 D.2.4
6.如图,在菱形中,,的垂直平分线交对角线于点,垂足为,连接,则的大小为( )
A. B. C. D.
7.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AC=4,则BC的长是( )
A.2 B.3 C.2 D.3
8.如图,直线l:y=﹣x++3与x轴交于点A,与经过点B(﹣2,0)的直线m交于第一象限内一点C,点E为直线l上一点,点D为点B关于y轴的对称点,连接DC、DE、BE,若∠DEC=2∠DCE,∠DBE=∠DEB,则CD2的值为( )
A.20+4 B.44+4
C.20+4或44﹣4 D.20﹣4或44+4
二、填空题
9.若a,b都是实数,且,则ab+1的平方根为 _____.
10.如图,菱形的对角线、相交于点,点、分别为边、的中点,连接,若,,则菱形的面积为______.
11.如图一根竹子长为8米,折断后竹子顶端落在离竹子底端4米处,折断处离地面高度是________米.
12.矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形周长的和是86cm,矩形的对角线长是13cm,那么该矩形的周长为_____.
13.小明从家步行到学校需走的路程为2000米.图中的折线OAB反映了小明从家步行到学校所走的路程s(米)与时间t(分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行20分钟时,距离学校还有__米.
14.如图所示,在四边形ABCD中,顺次连接四边中点E、F、G、H,构成一个新的四边形,请你对四边形ABCD添加一个条件,使四边形EFGH成一个菱形,这个条件是__________.
15.如图所示,直线与两坐标轴分别交于、两点,点是的中点,、分别是直线、轴上的动点,当周长最小时,点的坐标为_____.
16.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.
三、解答题
17.计算:
(1)2﹣6×;
(2)(﹣2)2﹣(﹣2)(+2);
(3)(1+)•(2﹣);
(4).
18.一架梯子长13米,斜靠在一面墙上,梯子底端离墙5米.
(1)这个梯子的顶端距地面有多高?
(2)如果梯子的顶端下滑了7米到C,那么梯子的底端在水平方向滑动了几米?
19.如图,网格中的,若小方格边长为,请你根据所学的知识,
(1)判断是什么形状?并说明理由;
(2)求的面积.
20.如图,在矩形ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.求证:
(1)△ABE≌DCF;
(2)四边形AEFD是平行四边形;探究:连结DE,若DE平分∠AEC,直接写出此时四边形AEFD的形状.
21.阅读下面的材料,解答后面提出的问题:
黑白双雄,纵横江湖;双剑合壁,天下无敌,这是武侠小说中的常见描述,其意思是指两个人合在一起,取长补短,威力无比,在二次根式中也有这种相辅相成的“对子”,如:(2+)(2-)=1,(+)(-)=3, 它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:==,==7+4.像这样通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.
解决问题:
(1)4+的有理化因式是 ,将分母有理化得 ;
(2)已知x=,y=,则= ;
(3)已知实数x,y满足(x+)(y+)-2017=0,则x= ,y= .
22.在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度与燃烧时间的关系如图所示.其中甲蜡烛燃烧前的高度是,乙蜡烛燃烧前的高度是,请根据图象所提供的信息解答下列问题:
(1)甲、乙两根蜡烛从点燃到燃尽所用的时间分别是 ;
(2)分别求甲、乙两根蜡烛燃烧时,与之间的函数关系式;
(3)当为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等(不考虑都燃尽时的情况)?在什么时间段内甲蜡烛比乙蜡烛高?在什么时间段内甲蜡烛比乙蜡烛低?
23.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.
(1)求证:四边形BFEP为菱形;
(2)当E在AD边上移动时,折痕的端点P、Q也随着移动.
①当点Q与点C重合时, (如图2),求菱形BFEP的边长;
②如果限定P、Q分别在线段BA、BC上移动,直接写出菱形BFEP面积的变化范围.
24.如图,在平面直角坐标系中,矩形OABC的两条边分别在坐标轴上,,.
(1)求AC所在的直线MN的解析式;
(2)把矩形沿直线DE对折,使点C落在点A处,DE与AC相交于点F,求点D的坐标;
(3)在直线MN上是否存在点P,使以点P,A,B三点为顶点的三角形是等腰三角形?若存在,请求出P点的坐标;若不存在,请说明理由.
25.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。
(1)如图1,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段AC,同时我们还发现损矩形中有公共边的两个三角形角的特点,在公共边的同侧的两个角是相等的。如图1中:△ABC和△ABD有公共边AB,在AB同侧有∠ADB和∠ACB,此时∠ADB=∠ACB;再比如△ABC和△BCD有公共边BC,在CB同侧有∠BAC和∠BDC,此时∠BAC=∠BDC。请再找一对这样的角来 =
(2)如图2,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,D为菱形ACEF的中心,连结BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由。
(3)在第(2)题的条件下,若此时AB=,BD=,求BC的长。
【参考答案】
一、选择题
1.A
解析:A
【分析】
根据二次根式有意义的条件求解即可.
【详解】
且
解得
或
或(舍)
故选A
【点睛】
本题考查了二次根式有意义的条件,以及与0相乘的数等于0,掌握二次根式有意义的条件是解题的关键.
2.C
解析:C
【分析】
利用勾股定理的逆定理逐一进行判断即可.
【详解】
A.,故该选项不符合题意;
B.,故该选项不符合题意;
C.,故该选项符合题意;
D.,故该选项不符合题意.
故选C.
【点睛】
本题主要考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解本题的关键.
3.D
解析:D
【解析】
【分析】
根据平行四边形的判定条件进行逐一判断即可.
【详解】
解:∵AO=OC,BO=OD,
∴四边形的对角线互相平分
∴D能判定ABCD是平行四边形.
若AO=BO,CO=DO,证明AC=BD,并不能证明四边形ABCD是平行四边形,故C错误,
若AO=OC,条件不足,无法明四边形ABCD是平行四边形,故A错误,
若AC=BD,条件不足,无法明四边形ABCD是平行四边形,故B错误,
故选D.
【点睛】
本题主要考查了平行四边形的判定,解题的关键在于能够熟练掌握平行四边形的判定条件.
4.C
解析:C
【解析】
【分析】
先求出平均数,再利用方差公式计算即可.
【详解】
解:,
.
故选:.
【点睛】
本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用来表示,计算公式是:.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
5.A
解析:A
【分析】
根据已知先判定其形状,再根据三角形的面积公式求得其高.
【详解】
解:∵三角形的三边长分别为6,8,10,符合勾股定理的逆定理62+82=102,
∴此三角形为直角三角形,则10为直角三角形的斜边,
设三角形最长边上的高是h,
根据三角形的面积公式得:×6×8=×10h,
解得h=4.8.
故选A
【点睛】
考查了勾股定理的逆定理,解答此题的关键是先判断出三角形的形状,再根据三角形的面积公式解答.勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
6.A
解析:A
【解析】
【分析】
根据菱形的性质可知,根据垂直平分线的性质可知,即可求得,进而求得,根据对称性可知,即可求得.
【详解】
四边形是菱形,
,
,
垂直平分,
,
,
菱形是轴对称图形,是它的一条对称轴,关于对称,
.
故选A.
【点睛】
本题考查了菱形的性质,垂直平分线的性质,轴对称的性质,掌握以上性质是解题的关键.
7.C
解析:C
【解析】
【分析】
由矩形的性质可得,由题意可得为等边三角形,再由勾股定理即可求解.
【详解】
解:在矩形ABCD中,,
∵∠AOB=60°
∴为等边三角形
∴
在中,
故选C
【点睛】
此题考查了矩形的性质,等边三角形的判定以及勾股定理,熟练掌握相关基本性质是解题的关键.
8.C
解析:C
【分析】
过点D作DF⊥l于点F,延长FD交y轴于点G,求出DF的解析式,联立方程组,求出点F的坐标,分点E在点F的上方和下方两种情况结合勾股定理求出结论即可.
【详解】
解:过点D作DF⊥l于点F,延长FD交y轴于点G,
∵点B(﹣2,0),且点D为点B关于y轴的对称点,
∴D(2,0)
∴BD=4
又∠DBE=∠DEB,
∴DE=BD=4
对于直线l:y=﹣x++3,当x=0时,y=+3;当y=0时,x=+3
∴OH=+3,AO=+3
∴
∴
∴
∴
又
∴,
∴
∴
设直线DF所在直线解析式为
把,D(2,0)代入得,
解得,
∴直线DF所在直线解析式为
联立,
解得,
∴F(,)
∴
在Rt△DFE中,
∴
①当E在F下方时,如图1,在E点下方直线l上取一点M,使EM=DE=4,连接DM,
∵EM=DE
∴
又∵
∴
又∵
∴
∴DC=DM
在Rt△DFM中,
∴
②当点E在F的上方时,如图2,在E点下方直线l上取一点M,使EM=DE=4,连接DM,
∵EM=DE
∴
又∵,
∴
∴DC=DM
∴
在Rt△DFM中,
∴
综上所述,或
故选:C
【点睛】
本题是一次函数的综合题;灵活应用勾股定理,熟练掌握待定系数法求函数解析式是解题的关键.
二、填空题
9.±5
【解析】
【分析】
根据二次根式有意义的条件可得: ,再解可得a的值,然后可得b的值,进而可得ab+1的平方根.
【详解】
解:由题意得:,
解得:a=3,
则b=8,
∴ab+1=25,
25的平方根为±5,
故答案为:±5.
【点睛】
本题主要考查了二次根式的概念,平方根的运算,熟悉掌握二次根式的非负性是解题的关键.
10.A
解析:
【解析】
【分析】
根据MN是△ABC的中位线,根据三角形中位线定理求的AC的长,然后根据菱形的性质求解.
【详解】
解:∵M、N是AB和BC的中点,即MN是△ABC的中位线,
∴AC=2MN=2,
∵,
所以菱形的面积为 ,
故答案为:
【点睛】
本题考查了三角形的中位线定理和菱形的性质,理解中位线定理求的AC的长是关键.
11.3
【解析】
【分析】
竹子折断后刚好构成一直角三角形,设竹子折断处离地面x米,则斜边为(8-x)米.利用勾股定理解题即可.
【详解】
解:设竹子折断处离地面x米,则斜边为(8-x)米,
根据勾股定理得:x2+42=(8-x)2
解得:x=3.
∴折断处离地面高度是3米,
故答案为:3.
【点睛】
此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.
12.A
解析:34cm
【分析】
根据四个小三角形的周长和为86,列式得,再由矩形的对角线相等解题即可.
【详解】
解:如图,矩形ABCD中,,
由题意得,,
故答案为:34cm.
【点睛】
本题考查矩形的性质,是重要考点,掌握相关知识是解题关键.
13.240
【分析】
当8≤t≤23时,设s=kt+b,将(8,800)、(23,2000)代入求得s=kt+b,,求出t=20时s的值,从而得出答案.
【详解】
解:当8≤t≤23时,设s=kt+b,
将(8,800)、(23,2000)代入,得:
,
解得:,
∴s=80t+160;
当t=20时,s=1760,
∵2000﹣1760=240,
∴当小明从家出发去学校步行20分钟时,到学校还需步行240米.
故答案为:240.
【点睛】
本题主要考查一次函数的应用,解题的关键是理解题意,从实际问题中抽象出一次函数的模型,并熟练掌握待定系数法求一次函数的解析式.
14.A
解析:答案不唯一,例AC=BD 等
【分析】
连接AC、BD,先证明四边形ABCD是平行四边形,再根据菱形的特点添加条件即可.
【详解】
连接AC,
∵点E、F分别是AB、BC的中点,
∴EF是△ABC的中位线,
∴EF∥AC,EF=AC,
同理HG∥AC,HG=AC,
∴EF∥HG,EF=HG,
∴四边形EFGH是平行四边形,
连接BD,同理EH=FG,EF∥FG,
当AC=BD时,四边形EFGH是平行四边形,
故答案为:答案不唯一,例AC=BD 等.
【点睛】
此题考查三角形中位线性质,平行四边形的判定及性质,菱形的判定.
15.【分析】
作点C关于AB的对称点F,关于AO的对称点G,连接DF,EG,由轴对称的性质,可得DF=DC,EC=EG,故当点F,D,E,G在同一直线上时,△CDE的周长=CD+DE+CE=DF+DE
解析:
【分析】
作点C关于AB的对称点F,关于AO的对称点G,连接DF,EG,由轴对称的性质,可得DF=DC,EC=EG,故当点F,D,E,G在同一直线上时,△CDE的周长=CD+DE+CE=DF+DE+EG=FG,此时△DEC周长最小,然后求出F、G的坐标从而求出直线FG的解析式,再求出直线AB和直线FG的交点坐标即可得到答案.
【详解】
解:如图,作点C关于AB的对称点F,关于AO的对称点G,连接FG分别交AB、OA于点D、E,
由轴对称的性质可知,CD=DF,CE=GE,BF=BC,∠FBD=∠CBD,
∴△CDE的周长=CD+CE+DE=FD+DE+EG,
∴要使三角形CDE的周长最小,即FD+DE+EG最小,
∴当F、D、E、G四点共线时,FD+DE+EG最小,
∵直线y=x+2与两坐标轴分别交于A、B两点,
∴B(-2,0),
∴OA=OB,
∴∠ABC=∠ABD=45°,
∴∠FBC=90°,
∵点C是OB的中点,
∴C(,0),
∴G点坐标为(1,0),,
∴F点坐标为(-2,),
设直线GF的解析式为,
∴,
∴,
∴直线GF的解析式为,
联立,
解得,
∴D点坐标为(,)
故答案为:(,).
【点睛】
本题主要考查了轴对称-最短路线问题,一次函数与几何综合,解题的关键是利用对称性在找到△CDE周长的最小时点D、点E位置,凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.
16.5
【详解】
试题解析:∵∠AFB=90°,D为AB的中点,
∴DF=AB=2.5,
∵DE为△ABC的中位线,
∴DE=BC=4,
∴EF=DE-DF=1.5,
故答案为1.5.
【点睛】
直角三
解析:5
【详解】
试题解析:∵∠AFB=90°,D为AB的中点,
∴DF=AB=2.5,
∵DE为△ABC的中位线,
∴DE=BC=4,
∴EF=DE-DF=1.5,
故答案为1.5.
【点睛】
直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.
三、解答题
17.(1)3﹣3;(2)﹣4;(3)﹣1+;(4)﹣
【分析】
(1)直接利用二次根式的性质以及立方根的性质,进而合并同类二次根式得出答案;
(2)直接利用乘法公式化简,再合并得出答案;
(3)直接利用
解析:(1)3﹣3;(2)﹣4;(3)﹣1+;(4)﹣
【分析】
(1)直接利用二次根式的性质以及立方根的性质,进而合并同类二次根式得出答案;
(2)直接利用乘法公式化简,再合并得出答案;
(3)直接利用二次根式的混合运算法则计算得出答案;
(4)直接利用二次根式的性质化简,进而得出答案.
【详解】
解:(1)2﹣6×
=6
=6
=;
(2)(﹣2)2﹣(﹣2)(+2)
=5+4-4-(13-4)
=9-4-9
=-4;
(3)(1+)•(2﹣)
=2-
=-1+;
(4)
=
=
=.
【点睛】
本题主要考查了二次根式的混合运算以及立方根的性质,正确化简二次根式是解题关键.
18.(1)12米;(2)7米
【分析】
(1)由题意易得AB=CD=13米,OB=5米,然后根据勾股定理可求解;
(2)由题意得CO= 5米,然后根据勾股定理可得求解.
【详解】
解:(1)由题意得,A
解析:(1)12米;(2)7米
【分析】
(1)由题意易得AB=CD=13米,OB=5米,然后根据勾股定理可求解;
(2)由题意得CO= 5米,然后根据勾股定理可得求解.
【详解】
解:(1)由题意得,AB=CD=13米,OB=5米,
在Rt,由勾股定理得:
AO2=AB2-OB2=132-52=169-25=144,
解得AO=12米,
答:这个梯子的顶端距地面有12米高;
(2)由题意得,AC=7米,
由(1)得AO=12米,
∴CO=AO-AC=12-7=5米,
在Rt,由勾股定理得:
OD2=CD2-CO2=132-52=169-25=144,
解得OD=12米
∴BD=OD-OB=12-5=7米,
答:梯子的底端在水平方向滑动了7米.
【点睛】
本题主要考查勾股定理,熟练掌握勾股定理是解题的关键.
19.(1)直角三角形,理由见解析;(2)5
【解析】
【分析】
(1)根据网格及勾股定理分别求出AB2、BC2、AC2的长,得出,再根据勾股定理的逆定理判断出三角形ABC的形状;
(2)判断出AB和AC
解析:(1)直角三角形,理由见解析;(2)5
【解析】
【分析】
(1)根据网格及勾股定理分别求出AB2、BC2、AC2的长,得出,再根据勾股定理的逆定理判断出三角形ABC的形状;
(2)判断出AB和AC分别为底和高,利用公式直接计算出面积.
【详解】
解:(1)∵,
,
,
,
为直角三角形;
(2)由(1)可知:
;
的面积为.
【点睛】
本题考查了勾股定理,勾股定理逆定理,三角形的面积,充分利用网格是解题关键.
20.(1)见解析;(2)证明见解析;探究:菱形
【分析】
(1)根据矩形性质直接根据边角边证明△ABE≌DCF即可;
(2)证明AE∥DF,AE=DF,可得结论;
探究:证明FD=FE,可得结论.
【详
解析:(1)见解析;(2)证明见解析;探究:菱形
【分析】
(1)根据矩形性质直接根据边角边证明△ABE≌DCF即可;
(2)证明AE∥DF,AE=DF,可得结论;
探究:证明FD=FE,可得结论.
【详解】
.证明:(1)∵四边形ABCD为矩形,
∴AB=DC,∠B=∠DCF,
∵BE=CF,
∴△ABE≌DCF;
(2)∵△ABE≌DCF,
∴∠AEB=∠F,AE=DF,
∴AE∥DF,
∴AE=DF,
∴四边形AEFD是平行四边形.
(3)此时四边形AEFD是菱形.
理由:如图1中,连接DE.
∵DE平分∠AEC,
∴∠AED=∠DEF,
∵AD∥EF,
∴∠ADE=∠DEF,
∴∠ADE=∠AED,
∴AD=AE,
∵四边形AEFD是平行四边形,
∴四边形AEFD是菱形.
【点睛】
本题属于四边形综合题,考查了矩形的性质,平行四边形的判定和性质,菱形的判定等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
21.(1),;(2)10 ;(3),.
【解析】
【详解】
(1) ∵,∴ 的有理化因式为 ;
∵,∴ 分母有理化得: .
(2). ∵ ,
∴
(3) ∵(x+)(y+)-2017=0
∴,
∴
解析:(1),;(2)10 ;(3),.
【解析】
【详解】
(1) ∵,∴ 的有理化因式为 ;
∵,∴ 分母有理化得: .
(2). ∵ ,
∴
(3) ∵(x+)(y+)-2017=0
∴,
∴
∴
∴ ,
整理得:
∴ ,x=y
将x=y代入可得:, .故答案为,.
点睛:此题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解本题的关键.
22.(1),;(2),;(3)当时,甲、乙两根蜡烛在燃烧过程中的高度相等;当时,甲蜡烛比乙蜡烛高,当时,甲蜡烛比乙蜡烛低.
【分析】
(1)根据函数图象可以解答本题;
(2)先设出甲、乙两根蜡烛燃烧时,
解析:(1),;(2),;(3)当时,甲、乙两根蜡烛在燃烧过程中的高度相等;当时,甲蜡烛比乙蜡烛高,当时,甲蜡烛比乙蜡烛低.
【分析】
(1)根据函数图象可以解答本题;
(2)先设出甲、乙两根蜡烛燃烧时,y与x之间的函数解析式,然后根据函数图象中的数据即可求得相应的函数解析式;
(3)根据题意,令(2)中的两个函数解析式的值相等,即可解答本题.
【详解】
解:(1)由图象可知,
甲、乙两根蜡烛燃烧前的高度分别是从点燃到烧尽所用小时分别是
故答案为:;
(2)设甲蜡烛燃烧时,y与x之间的函数解析式
即甲蜡烛燃烧时,y与x之间的函数解析式
设乙蜡烛燃烧时,y与x之间的函数解析式
即乙蜡烛燃烧时,y与x之间的函数解析式y=-10x+25;
∴,;
(3)由得即当时,甲、乙两根蜡烛在燃烧过程中的高度相等;观察图像可知,当时,甲蜡烛比乙蜡烛高,当时,甲蜡烛比乙蜡烛低.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用数形结合的思想解答.
23.(1)证明过程见解析;(2)①边长为cm,②.
【分析】
(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=E
解析:(1)证明过程见解析;(2)①边长为cm,②.
【分析】
(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;
(2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD-DE=1cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=cm即可;
②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案.
【详解】
解:(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ,
∴点B与点E关于PQ对称,
∴PB=PE,BF=EF,∠BPF=∠EPF,
又∵EF∥AB,
∴∠BPF=∠EFP,
∴∠EPF=∠EFP,
∴EP=EF,
∴BP=BF=EF=EP,
∴四边形BFEP为菱形;
(2)①∵四边形ABCD是矩形,
∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,
∵点B与点E关于PQ对称,
∴CE=BC=5cm,
在Rt△CDE中,DE==4cm,
∴AE=AD﹣DE=5cm-4cm=1cm;
在Rt△APE中,AE=1,AP=3-PB=3﹣PE,
∴,解得:EP=cm,
∴菱形BFEP的边长为cm;
②当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm,BP=cm,
,
当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,
,
∴菱形的面积范围:.
【点睛】
本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识,求出PE是本题的关键.
24.(1);(2);(3)存在,,,,
【解析】
【分析】
(1)根据矩形的性质确定点、的坐标,利用待定系数法求出直线的解析式;
(2)连接,根据折叠的性质得到,设,根据勾股定理列出方程,解方程求出的值
解析:(1);(2);(3)存在,,,,
【解析】
【分析】
(1)根据矩形的性质确定点、的坐标,利用待定系数法求出直线的解析式;
(2)连接,根据折叠的性质得到,设,根据勾股定理列出方程,解方程求出的值即可;
(3)分、、三种情况,根据等腰三角形的性质和勾股定理计算即可.
【详解】
解:(1)设直线的解析式是.
,,
,.
点、都在直线上,
,
解得:,
直线的解析式为;
(2)连接,由折叠可知,
设,则,
在中,,
,
解得:,
点的坐标为,;
(3)存在,
,,
.
点在直线上,
设,
①当时,点是线段的中垂线与直线的交点,
则;
②当时,,
整理得:,
解得,,
,,,;
③当时,,
整理得,,
则,
,
,
,.
综上所述,符合条件的点有:
,,,,,,.
【点睛】
本题考查的是矩形与折叠、勾股定理、待定系数法求函数解析式、等腰三角形的性质,灵活运用待定系数法求出函数解析式是解题的关键,解答时,注意分情况讨论思想的运用.
25.(1)∠ABD=∠ACD;(2)四边形ACEF为正方形,理由见解析;(3)5.
【解析】
【分析】
(1)以AD为公共边,有∠ABD=∠ACD;
(2)证明△ADC是等腰直角三角形,得AD=CD,则
解析:(1)∠ABD=∠ACD;(2)四边形ACEF为正方形,理由见解析;(3)5.
【解析】
【分析】
(1)以AD为公共边,有∠ABD=∠ACD;
(2)证明△ADC是等腰直角三角形,得AD=CD,则AE=CF,根据对角线相等的菱形是正方形可得结论;
(3)如图2,作辅助线构建直角三角形,证明△ABC≌△CHE,得CH=AB=3,根据平行线等分线段定理可得BG=GH=4,从而得结论.
【详解】
解:(1)由图1得:△ABD和△ADC有公共边AD,在AD同侧有∠ABD和∠ACD,此时∠ABD=∠ACD;
(2)四边形ACEF为正方形,理由是:
∵∠ABC=90°,BD平分∠ABC,
∴∠ABD=∠CBD=45°
∴∠DAC=∠CBD=45°
∵四边形ACEF是菱形,
∴AELCF,
∴∠ADC=90°,
∴△ADC是等腰直角三角形,
∴AD=CD,.AE=CF,
∴菱形ACEF是正方形;
(3)如图2,过D作DG⊥BC于G,过E作EH⊥BC,交BC的延长线于H,
∵∠DBG=45°,
∴△BDG是等腰直角三角形,BD=4,
∵BG=4,四边形ACEF是正方形,
∴AC=CE,∠ACE=90°,AD=DE,
易得△ABC≌△CHE,
∴CH=AB=3,AB//DG//EH,AD=DE,
∴BG=GH=4,
∴CG=4-3=1,
∴BC=BG+CG=4+1=5.
【点睛】
本题是四边形的综合题,也是新定义问题,考查了损矩形和损矩形的直径的概念,平行线等分线段定理,菱形的性质,正方形的判定等知识,认真阅读理解新定义,第3问有难度,作辅助线构建全等三角形是关键.
展开阅读全文