资源描述
2022年人教版中学七7年级下册数学期末解答题综合复习(含答案)
一、解答题
1.已知足球场的形状是一个长方形,而国际标准球场的长度和宽度(单位:米)的取值范围分别是,.若某球场的宽与长的比是1:1.5,面积为7350平方米,请判断该球场是否符合国际标准球场的长宽标准,并说明理由.
2.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3)
3.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.
(1)求正方形工料的边长;
(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:=1.414,=1.732,=2.236)
4.如图,在3×3的方格中,有一阴影正方形,设每一个小方格的边长为1个单位.请解决下面的问题.
(1)阴影正方形的面积是________?(可利用割补法求面积)
(2)阴影正方形的边长是________?
(3)阴影正方形的边长介于哪两个整数之间?请说明理由.
5.小丽想用一块面积为的正方形纸片,如图所示,沿着边的方向裁出一块面积为的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么?
二、解答题
6.如图,直线,一副直角三角板中,.
(1)若如图1摆放,当平分时,证明:平分.
(2)若如图2摆放时,则
(3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数.
(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长.
(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间.
7.已知,AB∥CD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,∠AGH=∠FED,FE⊥HE,垂足为E.
(1)如图1,求证:HG⊥HE;
(2)如图2,GM平分∠HGB,EM平分∠HED,GM,EM交于点M,求证:∠GHE=2∠GME;
(3)如图3,在(2)的条件下,FK平分∠AFE交CD于点K,若∠KFE:∠MGH=13:5,求∠HED的度数.
8.如图,已知直线射线,.是射线上一动点,过点作交射线于点,连接.作,交直线于点,平分.
(1)若点,,都在点的右侧.
①求的度数;
②若,求的度数.(不能使用“三角形的内角和是”直接解题)
(2)在点的运动过程中,是否存在这样的偕形,使?若存在,直接写出的度数;若不存在.请说明理由.
9.如图,已知直线射线CD,.P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP.作,交直线AB于点F,CG平分.
(1)若点P,F,G都在点E的右侧,求的度数;
(2)若点P,F,G都在点E的右侧,,求的度数;
(3)在点P的运动过程中,是否存在这样的情形,使?若存在,求出的度数;若不存在,请说明理由.
10.已知AB∥CD,∠ABE与∠CDE的角分线相交于点F.
(1)如图1,若BM、DM分别是∠ABF和∠CDF的角平分线,且∠BED=100°,求∠M的度数;
(2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度数;
(3)若∠ABM=∠ABF,∠CDM=∠CDF,请直接写出∠M与∠BED之间的数量关系
三、解答题
11.已知,将一副三角板中的两块直角三角板如图1放置,,,,.
(1)若三角板如图1摆放时,则______,______.
(2)现固定的位置不变,将沿方向平移至点E正好落在上,如图2所示,与交于点G,作和的角平分线交于点H,求的度数;
(3)现固定,将绕点A顺时针旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出的度数.
12.阅读下面材料:
小颖遇到这样一个问题:已知:如图甲,为之间一点,连接,求的度数.
她是这样做的:
过点作
则有
因为
所以①
所以
所以
即_ ;
1.小颖求得的度数为__ ;
2.上述思路中的①的理由是__ ;
3.请你参考她的思考问题的方法,解决问题:
已知:直线点在直线上,点在直线上,连接平分平分且所在的直线交于点.
(1)如图1,当点在点的左侧时,若,则的度数为 ;(用含有的式子表示).
(2)如图2,当点在点的右侧时,设,直接写出的度数(用含有的式子表示).
13.如图1,,E是、之间的一点.
(1)判定,与之间的数量关系,并证明你的结论;
(2)如图2,若、的两条平分线交于点F.直接写出与之间的数量关系;
(3)将图2中的射线沿翻折交于点G得图3,若的余角等于的补角,求的大小.
14.已知点A,B,O在一条直线上,以点O为端点在直线AB的同一侧作射线,,使.
(1)如图①,若平分,求的度数;
(2)如图②,将绕点O按逆时针方向转动到某个位置时,使得所在射线把分成两个角.
①若,求的度数;
②若(n为正整数),直接用含n的代数式表示.
15.问题情境
(1)如图1,已知,,,求的度数.佩佩同学的思路:过点作,进而,由平行线的性质来求,求得________.
问题迁移
(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,,,与相交于点,有一动点在边上运动,连接,,记,.
①如图2,当点在,两点之间运动时,请直接写出与,之间的数量关系;
②如图3,当点在,两点之间运动时,与,之间有何数量关系?请判断并说明理由;拓展延伸
(3)当点在,两点之间运动时,若,的角平分线,相交于点,请直接写出与,之间的数量关系.
四、解答题
16.(1)如图1,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度数;
(2)如图2,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α°,∠ABC=β°,求∠AEC的度数;
(3)如图3,PQ⊥MN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分∠BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由.
17.小明在学习过程中,对教材中的一个有趣问题做如下探究:
(习题回顾)已知:如图1,在中,,是角平分线,是高,、相交于点.求证:;
(变式思考)如图2,在中,,是边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,则与还相等吗?说明理由;
(探究延伸)如图3,在中,上存在一点,使得,的平分线交于点.的外角的平分线所在直线与的延长线交于点.直接写出与的数量关系.
18.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.
(1)当∠A为70°时,
∵∠ACD-∠ABD=∠______
∴∠ACD-∠ABD=______°
∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线
∴∠A1CD-∠A1BD=(∠ACD-∠ABD)
∴∠A1=______°;
(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、An,请写出∠A与∠An的数量关系______;
(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=______.
(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.
19.如图1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.
(1)求证:∠BED=90°;
(2)如图2,延长BE交CD于点H,点F为线段EH上一动点,∠EDF=α,∠ABF的角平分线与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小;
(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论: .
20.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.
(1)若DE//AB,则∠EAC= ;
(2)如图1,过AC上一点O作OG⊥AC,分别交AB、AD、AE于点G、H、F.
①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长;
②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.
【参考答案】
一、解答题
1.符合,理由见解析
【分析】
根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案.
【详解】
解:符合,理由如下:
设宽为b米,则长为1.5b米,由题意得,
1.5b×b
解析:符合,理由见解析
【分析】
根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案.
【详解】
解:符合,理由如下:
设宽为b米,则长为1.5b米,由题意得,
1.5b×b=7350,
∴b=70,或b=-70(舍去),
即宽为70米,长为1.5×70=105米,
∵100≤105≤110,64≤70≤75,
∴符合国际标准球场的长宽标准.
【点睛】
本题考查算术平方根的意义,列出方程求出长和宽是得出正确答案的前提.
2.选择建成圆形草坪的方案,理由详见解析
【分析】
根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答
解析:选择建成圆形草坪的方案,理由详见解析
【分析】
根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案.
【详解】
解:选择建成圆形草坪的方案,理由如下:
设建成正方形时的边长为x米,
由题意得:x2=81,
解得:x=±9,
∵x>0,
∴x=9,
∴正方形的周长为4×9=36,
设建成圆形时圆的半径为r米,
由题意得:πr2=81.
解得:,
∵r>0.
∴,
∴圆的周长=,
∵,
∴,
∴建成圆形草坪时所花的费用较少,
故选择建成圆形草坪的方案.
【点睛】
本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键.
3.(1)正方形工料的边长是 5 分米;
(2)这块正方形工料不合格,理由见解析.
【详解】
试题分析:(1)根据正方形的面积公式求出的值即可;
(2)设长方形的长宽分别为3x分米、2x分米,得出方程3
解析:(1)正方形工料的边长是 5 分米;
(2)这块正方形工料不合格,理由见解析.
【详解】
试题分析:(1)根据正方形的面积公式求出的值即可;
(2)设长方形的长宽分别为3x分米、2x分米,得出方程3x•2x=18,求出x=,再求出长方形的长和宽和5比较即可得出答案.
试题解析:(1)∵正方形的面积是 25 平方分米,
∴正方形工料的边长是 5 分米;
(2)设长方形的长宽分别为 3x 分米、2x 分米,
则 3x•2x=18,
x2=3,
x1= ,x2=(舍去),
3x=3>5,2x=2<5 ,
即这块正方形工料不合格.
4.(1)5;(2);(3)2与3两个整数之间,见解析
【分析】
(1)通过割补法即可求出阴影正方形的面积;
(2)根据实数的性质即可求解;
(3)根据实数的估算即可求解.
【详解】
(1)阴影正方形的
解析:(1)5;(2);(3)2与3两个整数之间,见解析
【分析】
(1)通过割补法即可求出阴影正方形的面积;
(2)根据实数的性质即可求解;
(3)根据实数的估算即可求解.
【详解】
(1)阴影正方形的面积是3×3-4×=5
故答案为:5;
(2)设阴影正方形的边长为x,则x2=5
∴x=(-舍去)
故答案为:;
(3)∵
∴
∴阴影正方形的边长介于2与3两个整数之间.
【点睛】
本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法.通过观察可知阴影部分的面积是5个小正方形的面积和.会利用估算的方法比较无理数的大小.
5.不同意,理由见解析
【分析】
先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断.
【详解】
解:不同意,
因为正方形的面积为,
解析:不同意,理由见解析
【分析】
先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断.
【详解】
解:不同意,
因为正方形的面积为,故边长为
设长方形宽为,则长为
长方形面积
∴,
解得(负值舍去)
长为
即长方形的长大于正方形的边长,
所以不能裁出符合要求的长方形纸片
【点睛】
本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.
二、解答题
6.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s
【分析】
(1)运用角平分线定义及平行线性质即可证得结论;
(2)如图2,过点E作EK∥MN,利用平行线性
解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s
【分析】
(1)运用角平分线定义及平行线性质即可证得结论;
(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;
(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;
(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;
(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.
【详解】
(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,
∵ED平分∠PEF,
∴∠PEF=2∠PED=2∠DEF=2×60°=120°,
∵PQ∥MN,
∴∠MFE=180°−∠PEF=180°−120°=60°,
∴∠MFD=∠MFE−∠DFE=60°−30°=30°,
∴∠MFD=∠DFE,
∴FD平分∠EFM;
(2)如图2,过点E作EK∥MN,
∵∠BAC=45°,
∴∠KEA=∠BAC=45°,
∵PQ∥MN,EK∥MN,
∴PQ∥EK,
∴∠PDE=∠DEK=∠DEF−∠KEA,
又∵∠DEF=60°.
∴∠PDE=60°−45°=15°,
故答案为:15°;
(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,
∴∠LFA=∠BAC=45°,∠RHG=∠QGH,
∵FL∥MN,HR∥PQ,PQ∥MN,
∴FL∥PQ∥HR,
∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,
∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,
∴∠QGH=∠FGQ,∠HFA=∠GFA,
∵∠DFE=30°,
∴∠GFA=180°−∠DFE=150°,
∴∠HFA=∠GFA=75°,
∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,
∴∠GFL=∠GFA−∠LFA=150°−45°=105°,
∴∠RHG=∠QGH=∠FGQ=(180°−105°)=37.5°,
∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;
(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,
∴D′A=DF,DD′=EE′=AF=5cm,
∵DE+EF+DF=35cm,
∴DE+EF+D′A+AF+DD′=35+10=45(cm),
即四边形DEAD′的周长为45cm;
(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,
分三种情况:
BC∥DE时,如图5,此时AC∥DF,
∴∠CAE=∠DFE=30°,
∴3t=30,
解得:t=10;
BC∥EF时,如图6,
∵BC∥EF,
∴∠BAE=∠B=45°,
∴∠BAM=∠BAE+∠EAM=45°+45°=90°,
∴3t=90,
解得:t=30;
BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,
∵∠DRM=∠EAM+∠DFE=45°+30°=75°,
∴∠BKA=∠DRM=75°,
∵∠ACK=180°−∠ACB=90°,
∴∠CAK=90°−∠BKA=15°,
∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,
∴3t=120,
解得:t=40,
综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.
【点睛】
本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.
7.(1)见解析;(2)见解析;(3)40°
【分析】
(1)根据平行线的性质和判定解答即可;
(2)过点H作HP∥AB,根据平行线的性质解答即可;
(3)过点H作HP∥AB,根据平行线的性质解答即可.
解析:(1)见解析;(2)见解析;(3)40°
【分析】
(1)根据平行线的性质和判定解答即可;
(2)过点H作HP∥AB,根据平行线的性质解答即可;
(3)过点H作HP∥AB,根据平行线的性质解答即可.
【详解】
证明:(1)∵AB∥CD,
∴∠AFE=∠FED,
∵∠AGH=∠FED,
∴∠AFE=∠AGH,
∴EF∥GH,
∴∠FEH+∠H=180°,
∵FE⊥HE,
∴∠FEH=90°,
∴∠H=180°﹣∠FEH=90°,
∴HG⊥HE;
(2)过点M作MQ∥AB,
∵AB∥CD,
∴MQ∥CD,
过点H作HP∥AB,
∵AB∥CD,
∴HP∥CD,
∵GM平分∠HGB,
∴∠BGM=∠HGM=∠BGH,
∵EM平分∠HED,
∴∠HEM=∠DEM=∠HED,
∵MQ∥AB,
∴∠BGM=∠GMQ,
∵MQ∥CD,
∴∠QME=∠MED,
∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,
∵HP∥AB,
∴∠BGH=∠GHP=2∠BGM,
∵HP∥CD,
∴∠PHE=∠HED=2∠MED,
∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),
∴∠GHE=∠2GME;
(3)过点M作MQ∥AB,过点H作HP∥AB,
由∠KFE:∠MGH=13:5,设∠KFE=13x,∠MGH=5x,
由(2)可知:∠BGH=2∠MGH=10x,
∵∠AFE+∠BFE=180°,
∴∠AFE=180°﹣10x,
∵FK平分∠AFE,
∴∠AFK=∠KFE= ∠AFE,
即,
解得:x=5°,
∴∠BGH=10x=50°,
∵HP∥AB,HP∥CD,
∴∠BGH=∠GHP=50°,∠PHE=∠HED,
∵∠GHE=90°,
∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°,
∴∠HED=40°.
【点睛】
本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键.
8.(1)①35°;(2)55°;(2)存在,或
【分析】
(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°
解析:(1)①35°;(2)55°;(2)存在,或
【分析】
(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=60°;
(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x-2x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.
【详解】
解:(1)①∵AB∥CD,
∴∠CEB+∠ECQ=180°,
∵∠CEB=110°,
∴∠ECQ=70°,
∵∠PCF=∠PCQ,CG平分∠ECF,
∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°;
②∵AB∥CD,
∴∠QCG=∠EGC,
∵∠QCG+∠ECG=∠ECQ=70°,
∴∠EGC+∠ECG=70°,
又∵∠EGC-∠ECG=30°,
∴∠EGC=50°,∠ECG=20°,
∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°−40°)=15°,
∵PQ∥CE,
∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.
(2)52.5°或7.5°,
设∠EGC=3x°,∠EFC=2x°,
①当点G、F在点E的右侧时,
∵AB∥CD,
∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,
则∠GCF=∠QCG-∠QCF=3x°-2x°=x°,
∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°,
则∠ECG=∠GCF=∠PCF=∠PCD=x°,
∵∠ECD=70°,
∴4x=70°,解得x=17.5°,
∴∠CPQ=3x=52.5°;
②当点G、F在点E的左侧时,反向延长CD到H,
∵∠EGC=3x°,∠EFC=2x°,
∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,
∴∠ECG=∠GCF=∠GCH-∠FCH=x°,
∵∠CGF=180°-3x°,∠GCQ=70°+x°,
∴180-3x=70+x,
解得x=27.5,
∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,
∴∠PCQ=∠FCQ=62.5°,
∴∠CPQ=∠ECP=62.5°-55°=7.5°,
【点睛】
本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.
9.(1)40°;(2)65°;(3)存在,56°或20°
【分析】
(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G
解析:(1)40°;(2)65°;(3)存在,56°或20°
【分析】
(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°;
(3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.
【详解】
解:(1)∵∠CEB=100°,AB∥CD,
∴∠ECQ=80°,
∵∠PCF=∠PCQ,CG平分∠ECF,
∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°;
(2)∵AB∥CD
∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,
∴∠EGC+∠ECG=80°,
又∵∠EGC-∠ECG=30°,
∴∠EGC=55°,∠ECG=25°,
∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°,
∵PQ∥CE,
∴∠CPQ=∠ECP=65°;
(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,
①当点G、F在点E的右侧时,
则∠ECG=x,∠PCF=∠PCD=x,
∵∠ECD=80°,
∴x+x+x+x=80°,
解得x=16°,
∴∠CPQ=∠ECP=x+x+x=56°;
②当点G、F在点E的左侧时,
则∠ECG=∠GCF=x,
∵∠CGF=180°-4x,∠GCQ=80°+x,
∴180°-4x=80°+x,
解得x=20°,
∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,
∴∠PCQ=∠FCQ=60°,
∴∠CPQ=∠ECP=80°-60°=20°.
【点睛】
本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.
10.(1)65°;(2);(3)2n∠M+∠BED=360°
【分析】
(1)首先作EG∥AB,FH∥AB,连结MF,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+
解析:(1)65°;(2);(3)2n∠M+∠BED=360°
【分析】
(1)首先作EG∥AB,FH∥AB,连结MF,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+∠CDF=130°,从而得到∠BFD的度数,再根据角平分线的定义和三角形外角的性质可求∠M的度数;
(2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代换即可求解;
(3)由(2)的方法可得到2n∠M+∠BED=360°.
【详解】
解:(1)如图1,作,,连结,
,
,
,,,,
,
,
,
和的角平分线相交于,
,
,
、分别是和的角平分线,
,,
,
;
(2)如图1,,,
,,
与两个角的角平分线相交于点,
,,
,
,
,
;
(3)由(2)结论可得,,,
则.
【点睛】
本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.
三、解答题
11.(1)15°;150°;(2)67.5°;(3)30°或90°或120°
【分析】
(1)根据平行线的性质和三角板的角的度数解答即可;
(2)根据平行线的性质和角平分线的定义解答即可;
(3)分当B
解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°
【分析】
(1)根据平行线的性质和三角板的角的度数解答即可;
(2)根据平行线的性质和角平分线的定义解答即可;
(3)分当BC∥DE时,当BC∥EF时,当BC∥DF时,三种情况进行解答即可.
【详解】
解:(1)作EI∥PQ,如图,
∵PQ∥MN,
则PQ∥EI∥MN,
∴∠α=∠DEI,∠IEA=∠BAC,
∴∠DEA=∠α+∠BAC,
∴α= DEA -∠BAC=60°-45°=15°,
∵E、C、A三点共线,
∴∠β=180°-∠DFE=180°-30°=150°;
故答案为:15°;150°;
(2)∵PQ∥MN,
∴∠GEF=∠CAB=45°,
∴∠FGQ=45°+30°=75°,
∵GH,FH分别平分∠FGQ和∠GFA,
∴∠FGH=37.5°,∠GFH=75°,
∴∠FHG=180°-37.5°-75°=67.5°;
(3)当BC∥DE时,如图1,
∵∠D=∠C=90,
∴AC∥DF,
∴∠CAE=∠DFE=30°,
∴∠BAM+∠BAC=∠MAE+∠CAE,
∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°;
当BC∥EF时,如图2,
此时∠BAE=∠ABC=45°,
∴∠BAM=∠BAE+∠EAM=45°+45°=90°;
当BC∥DF时,如图3,
此时,AC∥DE,∠CAN=∠DEG=15°,
∴∠BAM=∠MAN-∠CAN-∠BAC=180°-15°-45°=120°.
综上所述,∠BAM的度数为30°或90°或120°.
【点睛】
本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.
12.;2.平行于同一条直线的两条直线平行;3.(1);(2).
【分析】
1、根据角度和计算得到答案;
2、根据平行线的推论解答;
3、(1)根据角平分线的性质及1的结论证明即可得到答案;
(2)根据B
解析:;2.平行于同一条直线的两条直线平行;3.(1);(2).
【分析】
1、根据角度和计算得到答案;
2、根据平行线的推论解答;
3、(1)根据角平分线的性质及1的结论证明即可得到答案;
(2)根据BE平分平分求出,过点E作EF∥AB,根据平行线的性质求出∠BEF=,,再利用周角求出答案.
【详解】
1、过点作
则有
因为
所以①
所以
所以
即;
故答案为:;
2、过点作
则有
因为
所以EF∥CD(平行于同一条直线的两条直线平行),
故答案为:平行于同一条直线的两条直线平行;
3、(1)∵BE平分平分
∴,
过点E作EF∥AB,由1可得∠BED=,
∴∠BED=,
故答案为:;
(2)∵BE平分平分
∴,
过点E作EF∥AB,则∠ABE=∠BEF=,
∵
∴EF∥CD,
∴,
∴,
∴.
【点睛】
此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,平行线的推论,正确引出辅助线是解题的关键.
13.(1),见解析;(2);(3)60°
【分析】
(1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED;
(2)如图2,
解析:(1),见解析;(2);(3)60°
【分析】
(1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED;
(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,根据角平分线的定义得到∠BAF=∠BAE,∠CDF=∠CDE,则∠AFD=(∠BAE+∠CDE),加上(1)的结论得到∠AFD=∠AED;
(3)由(1)的结论得∠AGD=∠BAF+∠CDG,利用折叠性质得∠CDG=4∠CDF,再利用等量代换得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,从而可计算出∠BAE的度数.
【详解】
解:(1)
理由如下:
作,如图1,
,
.
,,
;
(2)如图2,由(1)的结论得,
、的两条平分线交于点F,
,,
,
,
;
(3)由(1)的结论得,
而射线沿翻折交于点G,
,
,
,
,
.
【点睛】
本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
14.(1);(2)①;②.
【分析】
(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;
(2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最
解析:(1);(2)①;②.
【分析】
(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;
(2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论;
②根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论.
【详解】
解:(1)∵平分,,
∴,
∴,
∴,
∴;
(2)①∵,
∴∠EOC+∠COD=∠BOD+∠COD,
∴∠EOC=∠BOD,
∵,,
∴,
∴,
∴,
∴;
②∵,
∴∠EOC+∠COD=∠BOD+∠COD,
∴∠EOC=∠BOD,
∵,,
∴,
∴,
∴,
∴.
【点睛】
本题考查邻补角的计算,角的和差,角平分线的有关计算.能正确识图,利用角的和差求得相应角的度数是解题关键.
15.(1);(2)①,②,理由见解析;(3)
【分析】
(1)过点作,则,由平行线的性质可得的度数;
(2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系;
②过作,依据平行线的性质可得,,即
解析:(1);(2)①,②,理由见解析;(3)
【分析】
(1)过点作,则,由平行线的性质可得的度数;
(2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系;
②过作,依据平行线的性质可得,,即可得到;
(3)过和分别作的平行线,依据平行线的性质以及角平分线的定义,即可得到与,之间的数量关系为.
【详解】
解:(1)如图1,过点作,则,
由平行线的性质可得,,
又∵,,
∴,
故答案为:;
(2)①如图2,与,之间的数量关系为;
过点P作PM∥FD,则PM∥FD∥CG,
∵PM∥FD,
∴∠1=∠α,
∵PM∥CG,
∴∠2=∠β,
∴∠1+∠2=∠α+∠β,
即:,
②如图,与,之间的数量关系为;理由:
过作,
∵,
∴,
∴,,
∴;
(3)如图,
由①可知,∠N=∠3+∠4,
∵EN平分∠DEP,AN平分∠PAC,
∴∠3=∠α,∠4=∠β,
∴,
∴与,之间的数量关系为.
【点睛】
本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.
四、解答题
16.(1)∠E=45°;(2)∠E=;(3)不变化,
【分析】
(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠
解析:(1)∠E=45°;(2)∠E=;(3)不变化,
【分析】
(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,则可得∠E= (∠D+∠B),继而求得答案;
(2)首先延长BC交AD于点F,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D,又由角平分线的性质,即可求得答案.
(3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案.
【详解】
解:(1)∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=∠BCD,∠EAD
展开阅读全文