资源描述
初二上册压轴题模拟数学综合检测试题附答案
1.如图,在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足.
(1)直接写出______,______;
(2)连接AB,P为内一点,.
①如图1,过点作,且,连接并延长,交于.求证:;
②如图2,在的延长线上取点,连接.若,点P(2n,−n),试求点的坐标.
2.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.
(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.
①求证:AD=BE;
②求∠AEB的度数.
(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.
3.如图1,将两块全等的三角板拼在一起,其中△ABC的边BC在直线l上,AC⊥BC且AC = BC;△EFP的边FP也在直线l上,边EF与边AC重合,EF⊥FP且EF = FP.
(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;
(2)将三角板△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP、BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;
(3)将三角板△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(2)中猜想的BQ与AP所满足的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.
4.已知:,.
(1)当a,b满足时,连接AB,如图1.
①求:的值.
②点M为线段AB上的一点(点M不与A,B重合,其中BM>AM),以点M为直角顶点,OM为腰作等腰直角△MON,连接BN,求证:.
(2)当,,连接AB,若点,过点D作于点E,点B与点C关于x轴对称,点F是线段DE上的一点(点F不与点E,D重合)且满足,连接AF,试判断线段AC与AF之间的位置关系和数量关系,并证明你的结论.
5.已知在四边形ABCD中,∠ABC+∠ADC=180°,AB=BC.
(1)如图1,若∠BAD=90°,AD=2,求CD的长度;
(2)如图2,点P、Q分别在线段AD、DC上,满足PQ=AP+CQ,求证:∠PBQ=90°−∠ADC;
(3)如图3,若点Q运动到DC的延长线上,点P也运动到DA的延长线上时,仍然满足PQ=AP+CQ,则(2)中的结论是否成立?若成立,请给出证明过程,若不成立,请写出∠PBQ与∠ADC的数量关系,并给出证明过程.
6.在等腰三角形ABC中,AB=AC,点D是AC上一动点,在BD的延长线上取一点E满足:AE=AB;AF平分∠CAE交BE于点F.
(1)如图1,连CF,求证:△ACF≌△AEF.
(2)如图2,当∠ABC=60°时,线段AF,EF,BF之间存在某种数量关系,写出你的结论并加以证明.
(3)如图3,当∠ACB=45°时,且AE∥BC,若EF=3,请直接写出线段BD的长是 (只填写结果).
7.如图,和中,,,,边与边交于点(不与点,重合),点,在异侧,为与的角平分线的交点.
(1)求证:;
(2)设,请用含的式子表示,并求的最大值;
(3)当时,的取值范围为,求出,的值.
8.如图1,在平面直角坐标系中,点在x轴负半轴上,点B在y轴正半轴上,设,且.
(1)直接写出的度数.
(2)如图2,点D为AB的中点,点P为y轴负半轴上一点,以AP为边作等边三角形APQ,连接DQ并延长交x轴于点M,若,求点M的坐标.
(3)如图3,点C与点A关于y轴对称,点E为OC的中点,连接BE,过点B作,且,连接AF交BC于点P,求的值.
【参考答案】
2.(1)3,;(2)①见解析;②的坐标为(,)
【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可;
(2)①连接AC,过点B作BN⊥BP,交CP的延长线于点N,利用SAS证明
解析:(1)3,;(2)①见解析;②的坐标为(,)
【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可;
(2)①连接AC,过点B作BN⊥BP,交CP的延长线于点N,利用SAS证明△OPB≌△OCA,再证明△BNP为等腰直角三角形,利用AAS证明△ACD≌△BND,即可证明AD=DB;
②作出如图所示的辅助线,证明△BMP为等腰直角三角形,利用AAS证明△PBF≌△MPE,求得E(2n,n) ,M(3n−3,n),证明点M,E关于y轴对称,得到3n−3+2n=0,即可求解.
【详解】(1)∵,
∴,
∴,,
解得:,,
故答案为:3,;
(2)①连接AC,
∵∠COP=∠AOB=90°,
∴∠COP-∠AOP =∠AOB-∠AOP,
∴,
在△OPB和△OCA中,
,
∴△OPB≌△OCA(SAS),
∴AC=BP,∠OCA=∠OPB=90°,
过点B作BN⊥BP,交CP的延长线于点N,
∵∠COP=90°,OP=OC,
∴∠OCP=∠OPC=∠ACP=45°,
∵∠OPB=90°,
∴∠BPN=45°,
∴△BNP为等腰直角三角形,
∴∠BPN=∠N=45°,
∴BN=BP=AC,
在△ACD和△BND中,
,
∴△ACD≌△BND(AAS),
∴AD=DB;
②∵∠AOB=90°,AO=OB,
∴△AOB为等腰直角三角形,
∴∠OBA=45°,
∵∠MBO=∠ABP,
∴∠MBO+∠OBP=∠ABP+∠OBP=∠OBA=45°,
∴∠MBP=45°,
∵OP⊥BP,
∴△BMP为等腰直角三角形,
∴MP=BP,
过点P作y轴的平行线EF,分别过M,B作ME⊥EF于E,BF⊥EF于F,EF交x轴于G,ME交y轴于H,连接OE,
∴∠MPE+∠EMP=∠MPE +∠FPB=90°,
∴∠EMP=∠FPB,
在△PBF和△MPE中,
,
∴△PBF≌△MPE(AAS),
∴BF=EP,PF=ME,
∵P(2n,−n),
∴BF=EP=EH=2n,PG=EG=n,PF=ME=3−n,
∴MH=ME-EH=3−n−2n=3−3n,
∴E(2n,n) ,M(3n−3,n),
∴点P,E关于x轴对称,
∴OE=OP,∠OEP=∠OPE,
同理OM=OE,点M,E关于y轴对称,
∴3n−3+2n=0,
解得,即点M的坐标为(,).
【点睛】本题考查了坐标与图形、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用全等三角形的性质解决问题.
3.(1)①见解析;②80°;(2)AE=2CF+BE,理由见解析.
【分析】(1)①通过角的计算找出∠ACD=∠BCE,再结合△ACB和△DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全
解析:(1)①见解析;②80°;(2)AE=2CF+BE,理由见解析.
【分析】(1)①通过角的计算找出∠ACD=∠BCE,再结合△ACB和△DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可证出△ACD≌△BCE,由此即可得出结论AD=BE;
②结合①中的△ACD≌△BCE可得出∠ADC=∠BEC,再通过角的计算即可算出∠AEB的度数;
(2)根据等腰三角形的性质结合顶角的度数,即可得出底角的度数,利用(1)的结论,通过解直角三角形即可求出线段AD、DE的长度,二者相加即可证出结论.
【详解】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,
∴∠ACB=∠DCE=180°﹣2×50°=80°,
∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,
∴∠ACD=∠BCE,
∵△ACB,△DCE都是等腰三角形,
∴AC=BC,DC=EC,
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS),
∴AD=BE.
②解:∵△ACD≌△BCE,
∴∠ADC=∠BEC,
∵点A、D、E在同一直线上,且∠CDE=50°,
∴∠ADC=180°﹣∠CDE=130°,
∴∠BEC=130°,
∵∠BEC=∠CED+∠AEB,∠CED=50°,
∴∠AEB=∠BEC﹣∠CED=80°.
(2)结论:AE=2CF+BE.
理由:∵△ACB,△DCE都是等腰直角三角形,
∴∠CDE=∠CED=45°,
∵CF⊥DE,
∴∠CFD=90°,DF=EF=CF,
∵AD=BE,
∴AE=AD+DE=BE+2CF.
【点睛】本题主要考查等腰三角形的性质以及三角形全等的证明,正确理解等腰三角形的性质以及三角形全等的证明是本题的解题关键.
4.(1)AB=AP,AB⊥AP;(2)BQ=AP,BQ⊥AP;(3)成立,见解析.
【分析】(1)根据等腰直角三角形性质得出AB=AP,∠BAC=∠PAC=45°,求出∠BAP=90°即可;
(2
解析:(1)AB=AP,AB⊥AP;(2)BQ=AP,BQ⊥AP;(3)成立,见解析.
【分析】(1)根据等腰直角三角形性质得出AB=AP,∠BAC=∠PAC=45°,求出∠BAP=90°即可;
(2)求出CQ=CP,根据SAS证△BCQ≌△ACP,推出AP=BQ,∠CBQ=∠PAC,根据三角形内角和定理求出∠CBQ+∠BQC=90°,推出∠PAC+∠AQG=90°,求出∠AGQ=90°即可;
(3)BO与AP所满足的数量关系为相等,位置关系为垂直.证明方法与(2)一样.
【详解】(1)AB=AP且AB⊥AP,
证明:∵AC⊥BC且AC=BC,
∴△ABC为等腰直角三角形,
∴∠BAC=∠ABC=,
又∵△ABC与△EFP全等,
同理可证∠PEF=45°,
∴∠BAP=45°+45°=90°,
∴AB=AP且AB⊥AP;
(2)BQ与AP所满足的数量关系是AP=BQ,位置关系是AP⊥BQ,
证明:延长BQ交AP于G,
由(1)知,∠EPF=45°,∠ACP=90°,
∴∠PQC=45°=∠QPC,
∴CQ=CP,
∵∠ACB=∠ACP=90°,AC=BC,
∴在△BCQ和△ACP中
∴△BCQ≌△ACP(SAS),
∴AP=BQ,∠CBQ=∠PAC,
∵∠ACB=90°,
∴∠CBQ+∠BQC=90°,
∵∠CQB=∠AQG,
∴∠AQG+∠PAC=90°,
∴∠AGQ=180°-90°=90°,
∴AP⊥BQ;
(3)成立.
证明:如图,∵∠EPF=45°,
∴∠CPQ=45°.
∵AC⊥BC,
∴∠CQP=∠CPQ,
CQ=CP.
在Rt△BCQ和Rt△ACP中,
∴Rt△BCQ≌Rt△ACP(SAS)
∴BQ=AP;
延长BQ交AP于点N,
∴∠PBN=∠CBQ.
∵Rt△BCQ≌Rt△ACP,
∴∠BQC=∠APC.
在Rt△BCQ中,∠BQC+∠CBQ=90°,
∴∠APC+∠PBN=90°.
∴∠PNB=90°.
∴BQ⊥AP.
【点睛】本题考查了全等三角形的判定与性质:有两组边对应相等,且它们所夹的角相等,那么这两个三角形全等;全等三角形的对应边相等.也考查了等腰直角三角形的判定与性质.
5.(1)10;证明见解析;
(2),,理由见解析;
【分析】(1)①利用可求出,,即可求出;②作交AB与点C,交AB与点F,证明,再证明,利用,即可证明;
(2)证明,得到,,再利用等量代换证明
解析:(1)10;证明见解析;
(2),,理由见解析;
【分析】(1)①利用可求出,,即可求出;②作交AB与点C,交AB与点F,证明,再证明,利用,即可证明;
(2)证明,得到,,再利用等量代换证明;
(1)
解:①由图可知,
∵
∴,即,
∴,,
∴;
②作交AB与点C,交AB与点F,如图,
∵,,
∴,
在和中,
∴,
∴,,,
∵,
∴,
∴,
∴,即,
∵,
∴,
∴,
∵,
∴,
即,
(2)
解:,,理由如下:
假设DE交BC于点G,
有已知可知:,,,,
∴,
∵
∴
∵,且,
∴,
在和中,
∴,
∴,,
∵,
∴,
∴,
【点睛】本题考查三角形全等的判定,等量代换,绝对值非负性的应用,直角坐标系中的图形,(1)的关键是证明,(2)的关键证明.
6.(1)CD=2;(2)证明见解析;(3)(2)中结论不成立,应该是:,理由见解析.
【分析】(1)如图1,利用HL证得两个直角三角形全等:Rt△BAD≌Rt△BCD,则其对应边相等:AD=DC=2
解析:(1)CD=2;(2)证明见解析;(3)(2)中结论不成立,应该是:,理由见解析.
【分析】(1)如图1,利用HL证得两个直角三角形全等:Rt△BAD≌Rt△BCD,则其对应边相等:AD=DC=2;
(2)如图2,延长DC,在上面找一点K,使得CK=AP,连接BK,通过证△BPA≌△BCK(SAS)得到:∠1=∠2,BP=BK.然后由全等三角形△PBQ≌△BKQ的对应角相等求得∠PBQ=∠ABC,结合已知条件“∠ABC+∠ADC=180°”可以推知∠PBQ=90°-∠ADC;
(3)(2)中结论不成立,应该是:∠PBQ=90°+∠ADC.
如图3,在CD延长线上找一点K,使得KC=AP,连接BK,构建全等三角形:△BPA≌△BCK(SAS),由该全等三角形的性质和全等三角形的判定定理SSS证得:△PBQ≌△BKQ,则其对应角相等:∠PBQ=∠KBQ,结合四边形的内角和是360度可以推得:∠PBQ=90°+∠ADC.
【详解】(1)∵, ∴
在Rt△BAD和Rt△BCD中,
∴Rt△BAD≌Rt△BCD(HL)
∴AD=DC=2 ∴DC=2
(2)如图,延长DC,在上面找一点K,使得CK=AP,连接BK
∵
∴
∵
∴
在△BPA和△BCK中
∴△BPA≌△BCK(SAS)
∴,BP=BK
∵PQ=AP+CQ
∴PQ=QK
在△PBQ和△BKQ中
∴△PBQ≌△BKQ(SSS)
∴
∴
∴
∵
∴
∴
∴
(3)(2)中结论不成立,应该是:
在CD延长线上找一点K,使得KC=AP,连接BK
∵
∴
∵
∴
在△BPA和△BCK中
∴△BPA≌△BCK(SAS)
∴,BP=BK
∴
∵PQ=AP+CQ
∴PQ=QK
在△PBQ和△BKQ中
∴△PBQ≌△BKQ(SSS)
∴
∴
∴
∴
【点睛】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
7.(1)证明见解析
(2),证明见解析
(3)6
【分析】(1)由角平分线的定义可知,再根据等量代换得出AC =AE,由此可直接利用“SAS”证明;
(2)在BE上截取BM=CF,连接AM.由
解析:(1)证明见解析
(2),证明见解析
(3)6
【分析】(1)由角平分线的定义可知,再根据等量代换得出AC =AE,由此可直接利用“SAS”证明;
(2)在BE上截取BM=CF,连接AM.由所作辅助线易证,得出,.由题意易判断为等边三角形,即可求出,即说明为等边三角形,得出,由此即得出;
(3)延长BA,CF交于点N.由题意可知为等腰直角三角形,即,.根据平行线的性质和等边对等角即得出BE为的角平分线,从而可求出,进而可求出.由角平分线的性质可得出,从而可求出.又易证,即得出.
(1)
∵AF平分∠CAE,
∴.
∵AB=AC,AB=AE,
∴AC =AE.
又∵AF=AF,
∴.
(2)
证明:∵,
∴,.
如图,在BE上截取BM=CF,连接AM.
在和中,,
∴,
∴,.
∵,,
∴为等边三角形,
∴.
∵,
∴,即,
∴为等边三角形,
∴,
∴.
即AF,EF,BF之间存在的关系为:;
(3)
如图,延长BA,CF交于点N.
∵,,
∴为等腰直角三角形,
∴,.
∵AE∥BC,
∴.
∵,
∴,
∴.
由(1)可知,
∴,
∴,即.
∵为的角平分线,
∴.
∵,
∴,即.
在和中,,
∴,
∴.
故答案为:6.
【点睛】本题为三角形综合题,考查等边三角形的判定和性质,等腰直角三角形的判定和性质,三角形全等的判定和性质,角平分线的定义和性质,平行线的性质以及三角形内角和定理,综合性强,较难.解题关键是学会添加常用的辅助线,构造全等三角形解决问题.
8.(1)见解析
(2),3
(3)m=105,n=150
【分析】(1)由条件易证,得,即可得证.
(2)PD=AD-AP=6-x,点P在线段BC上且不与B、C重合时, AP有最小值,即AD⊥
解析:(1)见解析
(2),3
(3)m=105,n=150
【分析】(1)由条件易证,得,即可得证.
(2)PD=AD-AP=6-x,点P在线段BC上且不与B、C重合时, AP有最小值,即AD⊥BC时AP的长度,此时PD可得最大值.
(3)为与的角平分线的交点,应用“三角形内角和等于180°”及角平分线定义,即可表示出,从而得到m,n的值.
(1)
解:在和中,如图1
即
(2)
解:
当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值
(3)
解:如图2,设则
为与的角平分线的交点
即
【点睛】本题是一道几何综合题,考查了点到直线的距离垂线段最短,30°的角所对的直角边等于斜边的一半,全等三角形的判定和性质,角平分线定义等,解题关键是将PD最大值转化为PA的最小值.
9.(1);(2);(3).
【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得;
(2)连接BM,,进而证明
解析:(1);(2);(3).
【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得;
(2)连接BM,,进而证明为等边三角形,根据含30度角的直角三角形的性质即可求得
(3)过点F作轴交CB的延长线于点N,证明,,设,则等边三角形ABC的边长是4a,,进而计算可得,,即可求得的值.
【详解】(1)∵点在x轴负半轴上,
∴,,
∵,,
∴,
∵,
∴,
∴,
如答图1,在x轴的正半轴上取点C,使,连接BC,
∵,
∴,
又∵,
∴,
∴,
∴是等边三角形,
∴;
(2)如答图2,连接BM,
∴是等边三角形,
∵,,
∵∠,
∴,
∴,
∵D为AB的中点,
∴,
∵,
∴,
∴,在和中,
∴,
∴,即,
∴,
∴为等边三角形,
∴,∴;
(3)如答图3,过点F作轴交CB的延长线于点N,
则,
∵,
∴,
在和中,
∴,
∴,,
∵,
∴,
又∵E是OC的中点,设,
∴等边三角形ABC的边长是4a,,
∵,
∴,
在和中,
∴,
∴,
又∵,
∴,
,
∴.
【点睛】本题考查了坐标与图形,三角形全等的性质与判定,等边三角形的性质与判定,因式分解的应用,掌握三角形全等的性质与判定并正确的添加辅助线是解题的关键.
展开阅读全文