收藏 分销(赏)

初二数学上册压轴题强化检测试题带答案[001].doc

上传人:快乐****生活 文档编号:1790246 上传时间:2024-05-09 格式:DOC 页数:21 大小:765.54KB
下载 相关 举报
初二数学上册压轴题强化检测试题带答案[001].doc_第1页
第1页 / 共21页
初二数学上册压轴题强化检测试题带答案[001].doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述
初二数学上册压轴题强化检测试题带答案 1.已知,如图1,射线分别与直线相交于两点,的平分线与直线相交于点,射线交于点,设,,且. (1) ______°,______°;直线与的位置关系是______; (2)如图2,若点是射线上任意一点,且,试找出与之间存在的数量关系,证明你的结论; (3)若将图中的射线绕着端点逆时针方向旋转(如图3),分别与相交于点和时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由. 3.已知△ABC是等边三角形,△ADE的顶点D在边BC上 (1)如图1,若AD=DE,∠AED=60°,求∠ACE的度数; (2)如图2,若点D为BC的中点,AE=AC,∠EAC=90°,连CE,求证:CE=2BF; (3)如图3,若点D为BC的一动点,∠AED=90°,∠ADE=30°,已知△ABC的面积为4,当点D在BC上运动时,△ABE的面积是否发生变化?若不变,请求出其面积;若变化请说明理由. 3.如图,已知CD是线段AB的垂直平分线,垂足为D,C在D点上方,∠BAC=30°,P是直线CD上一动点,E是射线AC上除A点外的一点,PB=PE,连BE. (1)如图1,若点P与点C重合,求∠ABE的度数; (2)如图2,若P在C点上方,求证:PD+AC=CE; (3)若AC=6,CE=2,则PD的值为   (直接写出结果). 4.如图1,在平面直角坐标系中,AO=AB,∠BAO=90°,BO=8cm,动点D从原点O出发沿x轴正方向以acm/s的速度运动,动点E也同时从原点O出发在y轴上以bcm/s的速度运动,且a,b满足关系式a2+b2﹣4a﹣2b+5=0,连接OD,OE,设运动的时间为t秒. (1)求a,b的值; (2)当t为何值时,△BAD≌△OAE; (3)如图2,在第一象限存在点P,使∠AOP=30°,∠APO=15°,求∠ABP. 5.请按照研究问题的步骤依次完成任务. 【问题背景】 (1)如图1的图形我们把它称为“8字形”, 请说理证明∠A+∠B=∠C+∠D. 【简单应用】 (2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度数(可直接使用问题(1)中的结论) 【问题探究】 (3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE, 若∠ABC=36°,∠ADC=16°,猜想∠P的度数为 ; 【拓展延伸】 (4)在图4中,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为 (用x、y表示∠P) ; (5)在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、D的关系,直接写出结论 . 6.如图1,将两块全等的三角板拼在一起,其中△ABC的边BC在直线l上,AC⊥BC且AC = BC;△EFP的边FP也在直线l上,边EF与边AC重合,EF⊥FP且EF = FP. (1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系; (2)将三角板△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP、BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想; (3)将三角板△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(2)中猜想的BQ与AP所满足的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由. 7.在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足. (1)求点A和点B的坐标; (2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;: (3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标. 8.如图,在平面直角坐标系中,点A(0,3),B(,0),AB =6,作∠DBO=∠ABO,点H为y轴上的点,∠CAH=∠BAO,BD交y轴于点E,直线DO交AC于点C. (1)证明:△ABE为等边三角形; (2)若CD⊥AB于点F,求线段CD的长; (3)动点P从A出发,沿A﹣O﹣B路线运动,速度为1个单位长度每秒,到B点处停止运动;动点Q从B出发,沿B﹣O﹣A路线运动,速度为2个单位长度每秒,到A点处停止运动.两点同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间时△OPM与△OQN全等? 【参考答案】 2.(1)30,30,AB//CD;(2)+=180°,证明见解析;(3)不变,. 【分析】(1)利用非负数的性质可知:α=β=40°,推出∠EMF=∠MFN即可解决问题; (2)结论:∠FMN+∠ 解析:(1)30,30,AB//CD;(2)+=180°,证明见解析;(3)不变,. 【分析】(1)利用非负数的性质可知:α=β=40°,推出∠EMF=∠MFN即可解决问题; (2)结论:∠FMN+∠GHF=180°.只要证明GH∥PN即可解决问题; (3)结论:的值不变,=2.如图3中,作∠PEM1的平分线交M1Q的延长线于R.只要证明∠R=∠FQM1,∠FPM1=2∠R即可; 【详解】解:(1)∵, ∴60-2α=0,β-30=0, ∴α=β=30°, ∴∠PFM=∠MFN=30°,∠EMF=30°, ∴∠EMF=∠MFN, ∴AB∥CD; (2)结论:∠FMN+∠GHF=180°, 理由如下:如图2中, ∵AB∥CD, ∴∠MNF=∠PME, ∵∠MGH=∠MNF, ∴∠PME=∠MGH, ∴GH∥PN, ∴∠GHM=∠FMN, ∵∠GHF+∠GHM=180°, ∴∠FMN+∠GHF=180°; (3)的值不变,=2. 理由如下:如图3中,作∠PEM1的平分线交M1Q的延长线于R, ∵AB∥CD, ∴∠PEM1=∠PFN, ∵∠PER=∠PEM1,∠PFQ=∠PFN, ∴∠PER=∠PFQ, ∴ER∥FQ, ∴∠FQM1=∠R, 设∠PER=∠REB=x,∠PM1R=∠RM1B=y, 则有:,可得∠EPM1=2∠R, ∴∠EPM1=2∠FQM1, ∴=2. 【点睛】本题考查几何变换综合题、平行线的判定和性质、角平分线的定义、非负数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造平行线解决问题. 3.(1)60°;(2)见解析;(3)不变, 【分析】(1)由题意,先证△ADE是等边三角形,再证△BAD≌△CAE,得∠ACE=∠B=60°; (2)由题意,先求出∠BEC=30°,然后求出∠CF 解析:(1)60°;(2)见解析;(3)不变, 【分析】(1)由题意,先证△ADE是等边三角形,再证△BAD≌△CAE,得∠ACE=∠B=60°; (2)由题意,先求出∠BEC=30°,然后求出∠CFE=90°,利用直角三角形中30度角所对直角边等于斜边的一半,即可得证; (3)延长AE至F,使EF=AE,连DF、CF,先证明△ADF是等边三角形,然后证明△EGF≌△EHA,结合HG是定值,即可得到答案. 【详解】解:(1)根据题意, ∵AD=DE,∠AED=60°, ∴△ADE是等边三角形, ∴AD=AE,∠DAE=60°, ∵AB=AC,∠BAC=60°, ∴, 即, ∴△BAD≌△CAE, ∴∠ACE=∠B=60°; (2)连CF,如图: ∵AB=AC=AE, ∴∠AEB=∠ABE, ∵∠BAC=60°,∠EAC=90°, ∴∠BAE=150°, ∴∠AEB=∠ABE=15°; ∵△ACE是等腰直角三角形, ∴∠AEC=45°, ∴∠BEC=30°,∠EBC=45°, ∵AD垂直平分BC,点F在AD上, ∴CF=BF, ∴∠FCB=∠EBC=45°, ∴∠CFE=90°, 在直角△CEF中,∠CFE=90°,∠CEF=30°, ∴CE=2CF=2BF; (3)延长AE至F,使EF=AE,连DF、CF,如图: ∵∠AED=90°,EF=AE, ∴DE是中线,也是高, ∴△ADF是等腰三角形, ∵∠ADE=30°, ∴∠DAE=60°, ∴△ADF是等边三角形; 由(1)同理可求∠ACF=∠ABC=60°, ∴∠ACF=∠BAC=60°, ∴CF∥AB, 过E作EG⊥CF于G,延长GE交BA的延长线于点H, 易证△EGF≌△EHA, ∴EH=EG=HG, ∵HG是两平行线之间的距离,是定值, ∴S△ABE=S△ABC=; 【点睛】本题考查了等边三角形的判定和性质,等腰三角形的判定和性质,垂直平分线的性质,全等三角形的判定和性质,含30度角的直角三角形的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题. 4.(1)∠ABE=90°;(2)PD+AC=CE,见解析;(3)1 【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:△BPE为等边三角形,则∠CBE=60°,故∠ABE=90°; 解析:(1)∠ABE=90°;(2)PD+AC=CE,见解析;(3)1 【分析】(1)根据线段垂直平分线的性质和等边三角形的判定与性质得到:△BPE为等边三角形,则∠CBE=60°,故∠ABE=90°; (2)如图2,过P作PH⊥AE于H,连BC,作PG⊥BC交BC的延长线于G,构造含30度角的直角△PCG、直角△CPH以及全等三角形(Rt△PGB≌Rt△PHE),根据含30度的直角三角形的性质和全等三角形的对应边相等证得结论; (3)分三种情况讨论,根据(2)的解题思路得到PD=AC+CE或PD=CE-AC,将数值代入求解即可. 【详解】(1)解:如图1,∵点P与点C重合,CD是线段AB的垂直平分线, ∴PA=PB, ∴∠PAB=∠PBA=30°, ∴∠BPE=∠PAB+∠PBA=60°, ∵PB=PE, ∴△BPE为等边三角形, ∴∠CBE=60°, ∴∠ABE=90°; (2)如图2,过P作PH⊥AE于H,连BC,作PG⊥BC交BC的延长线于G, ∵CD垂直平分AB, ∴CA=CB, ∵∠BAC=30°, ∴∠ACD=∠BCD=60°, ∴∠GCP=∠HCP=∠BCE=∠ACD=∠BCD=60°, ∴∠GPC=∠HPC=30°, ∴PG=PH,CG=CH=CP,CD=AC, 在Rt△PGB和Rt△PHE中, , ∴Rt△PGB≌Rt△PHE(HL). ∴BG=EH,即CB+CG=CE-CH, ∴CB+CP=CE-CP,即CB+CP=CE, 又∵CB=AC, ∴CP=PD-CD=PD-AC, ∴PD+AC=CE; (3)①当P在C点上方时,由(2)得:PD=CE-AC, 当AC=6,CE=2时,PD=2-3=-1,不符合题意; ②当P在线段CD上时, 如图3,过P作PH⊥AE于H,连BC,作PG⊥BC交BC于G, 此时Rt△PGB≌Rt△PHE(HL), ∴BG=EH,即CB-CG=CE+CH, ∴CB-CP=CE+CP,即CP=CB-CE, 又∵CB=AC, ∴PD=CD-CP=AC-CB+CE, ∴PD=CE-AC. 当AC=6,CE=2时,PD=2-3=-1,不符合题意; ③当P在D点下方时,如图4, 同理,PD=AC-CE, 当AC=6,CE=2时,PD=3-2=1. 故答案为:1. 【点睛】本题主要考查了三角形综合题,综合运用全等三角形的判定与性质,含30度角直角三角形的性质,等边三角形的判定与性质等知识点,难度较大,解题时,注意要分类讨论. 5.(1)a=2,b=1;(2)t=或t=8;(3)∠ABP=105°. 【分析】(1)将a2+b2﹣4a﹣2b+5=0用配方法得出(a﹣2)2+(b﹣1)2=0,利用非负数的性质,即可得出结论; 解析:(1)a=2,b=1;(2)t=或t=8;(3)∠ABP=105°. 【分析】(1)将a2+b2﹣4a﹣2b+5=0用配方法得出(a﹣2)2+(b﹣1)2=0,利用非负数的性质,即可得出结论; (2)先由运动得出BD=|8﹣2t|,再由全等三角形的性质的出货BD=OE,建立方程求解即可得出结论. (3)先判断出△OAP≌△BAQ(SAS),得出OP=BQ,∠ABQ=∠AOP=30°,∠AQB=∠APO=15°,再求出∠OAP=135°,进而判断出△OAQ≌△BAQ(SAS),得出∠OQA=∠BQA=15°,OQ=BQ,再判断出△OPQ是等边三角形,得出∠OQP=60°,进而求出∠BQP=30°,再求出∠PBQ=75°,即可得出结论. 【详解】解:(1)∵a2+b2﹣4a﹣2b+5=0, ∴(a﹣2)2+(b﹣1)2=0, ∴a﹣2=0,b﹣1=0, ∴a=2,b=1; (2)由(1)知,a=2,b=1, 由运动知,OD=2t,OE=t, ∵OB=8, ∴DB=|8﹣2t| ∵△BAD≌△OAE, ∵DB=OE, ∴|8﹣2t|=t, 解得,t=(如图1)或t=8(如图2); (3)如图3, 过点A作AQ⊥AP,使AQ=AP,连接OQ,BQ,PQ, 则∠APQ=45°,∠PAQ=90°, ∵∠OAB=90°, ∴∠PAQ=∠OAB, ∴∠OAB+∠BAP=∠PAQ+∠BAP, 即:∠OAP=∠BAQ, ∵OA=AB,AD=AD, ∴△OAP≌△BAQ(SAS), ∴OP=BQ,∠ABQ=∠AOP=30°,∠AQB=∠APO=15°, 在△AOP中,∠AOP=30°,∠APO=15°, ∴∠OAP=180°﹣∠AOP﹣∠APO=135°, ∴∠OAQ=360°﹣∠OAP﹣∠PAQ=135°﹣90°=135°=∠OAP, ∵OA=AB,AD=AD, ∴△OAQ≌△BAQ(SAS), ∴∠OQA=∠BQA=15°,OQ=BQ, ∵OP=BQ, ∴OQ=OP, ∵∠APQ=45°,∠APO=15°, ∴∠OPQ=∠APO+∠APQ=60°, ∴△OPQ是等边三角形, ∴∠OQP=60°, ∴∠BQP=∠OQP﹣∠OQA﹣∠BQA=60°﹣15°﹣15°=30°, ∵BQ=PQ, ∴∠PBQ=(180°﹣∠BQP)=75°, ∴∠ABP=∠ABQ+∠PBQ=30°+75°=105°. 【点睛】本题是三角形综合题,主要考查了配方法、非负数的性质、三角形内角和定理、等边三角形的判定和性质、全等三角形的判定及性质,构造出全等三角形是解题的关键. 6.(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=. 【分析】(1)根据三角形内角和定理即可证明; (2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方 解析:(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=. 【分析】(1)根据三角形内角和定理即可证明; (2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方程组即可得到结论; (3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解决问题; (4)根据题意得出∠B+∠CAB=∠C+∠BDC,再结合∠CAP=∠CAB,∠CDP=∠CDB,得到y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),从而可得∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=; (5)根据题意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再结合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,所以∠P=90°+∠BCD-∠BAD +∠D=. 【详解】解:(1)证明:在△AOB中,∠A+∠B+∠AOB=180°, 在△COD中,∠C+∠D+∠COD=180°, ∵∠AOB=∠COD, ∴∠A+∠B=∠C+∠D; (2)解:如图2,∵AP、CP分别平分∠BAD,∠BCD, ∴∠1=∠2,∠3=∠4, 由(1)的结论得:, ①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D, ∴∠P=(∠B+∠D)=23°; (3)解:如图3, ∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE, ∴∠1=∠2,∠3=∠4, ∴∠PAD=180°-∠2,∠PCD=180°-∠3, ∵∠P+(180°-∠1)=∠D+(180°-∠3), ∠P+∠1=∠B+∠4, ∴2∠P=∠B+∠D, ∴∠P=(∠B+∠D)=×(36°+16°)=26°; 故答案为:26°; (4)由题意可得:∠B+∠CAB=∠C+∠BDC, 即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y, ∠B+∠BAP=∠P+∠PDB, 即y+∠BAP=∠P+∠PDB, 即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP), 即y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB), ∴∠P=y+∠CAB-∠CAB-∠CDB+∠CDB = y+(∠CAB-∠CDB) =y+(x-y) = 故答案为:∠P=; (5)由题意可得:∠B+∠BAD=∠D+∠BCD, ∠DAP+∠P=∠PCD+∠D, ∴∠B-∠D=∠BCD-∠BAD, ∵AP平分∠BAD,CP平分∠BCD的外角∠BCE, ∴∠BAP=∠DAP,∠PCE=∠PCB, ∴∠BAD+∠P=(∠BCD+∠BCE)+∠D, ∴∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D, ∴∠P=90°+∠BCD-∠BAD +∠D =90°+(∠BCD-∠BAD)+∠D =90°+(∠B-∠D)+∠D =, 故答案为:∠P=. 【点睛】本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型. 7.(1)AB=AP,AB⊥AP;(2)BQ=AP,BQ⊥AP;(3)成立,见解析. 【分析】(1)根据等腰直角三角形性质得出AB=AP,∠BAC=∠PAC=45°,求出∠BAP=90°即可; (2 解析:(1)AB=AP,AB⊥AP;(2)BQ=AP,BQ⊥AP;(3)成立,见解析. 【分析】(1)根据等腰直角三角形性质得出AB=AP,∠BAC=∠PAC=45°,求出∠BAP=90°即可; (2)求出CQ=CP,根据SAS证△BCQ≌△ACP,推出AP=BQ,∠CBQ=∠PAC,根据三角形内角和定理求出∠CBQ+∠BQC=90°,推出∠PAC+∠AQG=90°,求出∠AGQ=90°即可; (3)BO与AP所满足的数量关系为相等,位置关系为垂直.证明方法与(2)一样. 【详解】(1)AB=AP且AB⊥AP, 证明:∵AC⊥BC且AC=BC, ∴△ABC为等腰直角三角形, ∴∠BAC=∠ABC=, 又∵△ABC与△EFP全等, 同理可证∠PEF=45°, ∴∠BAP=45°+45°=90°, ∴AB=AP且AB⊥AP; (2)BQ与AP所满足的数量关系是AP=BQ,位置关系是AP⊥BQ, 证明:延长BQ交AP于G, 由(1)知,∠EPF=45°,∠ACP=90°, ∴∠PQC=45°=∠QPC, ∴CQ=CP, ∵∠ACB=∠ACP=90°,AC=BC, ∴在△BCQ和△ACP中 ∴△BCQ≌△ACP(SAS), ∴AP=BQ,∠CBQ=∠PAC, ∵∠ACB=90°, ∴∠CBQ+∠BQC=90°, ∵∠CQB=∠AQG, ∴∠AQG+∠PAC=90°, ∴∠AGQ=180°-90°=90°, ∴AP⊥BQ; (3)成立. 证明:如图,∵∠EPF=45°, ∴∠CPQ=45°. ∵AC⊥BC, ∴∠CQP=∠CPQ, CQ=CP. 在Rt△BCQ和Rt△ACP中, ∴Rt△BCQ≌Rt△ACP(SAS) ∴BQ=AP; 延长BQ交AP于点N, ∴∠PBN=∠CBQ. ∵Rt△BCQ≌Rt△ACP, ∴∠BQC=∠APC. 在Rt△BCQ中,∠BQC+∠CBQ=90°, ∴∠APC+∠PBN=90°. ∴∠PNB=90°. ∴BQ⊥AP. 【点睛】本题考查了全等三角形的判定与性质:有两组边对应相等,且它们所夹的角相等,那么这两个三角形全等;全等三角形的对应边相等.也考查了等腰直角三角形的判定与性质. 8.(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2) 【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案; (2) 解析:(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2) 【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案; (2)如图,过点F作FH⊥AO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案; (3)过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解. 【详解】(1)∵, ∴. ∵, ∴, ∴, ∴, ∴,. (2)如图,过点F作FH⊥AO于点H ∵AF⊥AE ∴∠FHA=∠AOE=90°, ∵ ∴∠AFH=∠EAO 又∵AF=AE, 在和中 ∴ ∴AH=EO=2,FH=AO=4 ∴OH=AO-AH=2 ∴F(-2,4) ∵OA=BO, ∴FH=BO 在和中 ∴ ∴HD=OD ∵ ∴HD=OD=1 ∴D(-1,0) ∴D(-1,0),F(-2,4); (3)如图,过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S ∴ ∴, ∴ ∴ ∴ ∴等腰 ∴NQ=NO, ∵NG⊥PN, NS⊥EG ∴ ∴, ∴ ∵, ∴ ∵点E为线段OB的中点 ∴ ∴ ∴ ∴ ∴ ∴ ∴ ∴等腰 ∴NG=NP, ∵ ∴ ∴∠QNG=∠ONP 在和中 ∴ ∴∠NGQ=∠NPO,GQ=PO ∵, ∴PO=PB ∴∠POE=∠PBE=45° ∴∠NPO=90° ∴∠NGQ=90° ∴∠QGR=45°. 在和中 ∴. ∴QR=OE 在和中 ∴ ∴QM=OM. ∵NQ=NO, ∴NM⊥OQ ∵ ∴等腰 ∴ ∵ ∴ 在和中 ∴ ∴NS=EM=4,MS=OE=2 ∴N(-6,2). 【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解. 9.(1)详见解析;(2)CD=;(3)当两动点运动时间为、、6秒时,△OPM与△OQN全等. 【分析】(1)先证△AOB≌△EOB得到AE=BE=AB,从而可以得出结论; (2)由(1)知∠ABE 解析:(1)详见解析;(2)CD=;(3)当两动点运动时间为、、6秒时,△OPM与△OQN全等. 【分析】(1)先证△AOB≌△EOB得到AE=BE=AB,从而可以得出结论; (2)由(1)知∠ABE=∠BEA=∠EAB=60°,进而得出∠AOF=30°,利用含30°角的直角三角形的性质得到AF、OF的长.再证明∠ACF=∠AOF=30°,∠D=30°,同理得出CF、DF的长,进而可得出结论. (3)设运动的时间为t秒.然后分四种情况讨论:①当点P、Q分别在y轴、x轴上时,;②当点P、Q都在y轴上时,;③当点P在x轴上,Q在y轴且二者都没有提前停止时,;④当点P在x轴上,Q在y轴且点Q提前停止时,,列方程求解即可. 【详解】(1)在△AOB与△EOB中,∵∠AOB=∠EOB,OB=OB,∠EBO=∠ABO,∴△AOB≌△EOB (ASA),∴AO=EO=3,BE=AB=6,∴AE=BE=AB=6,∴△ABE为等边三角形. (2)由(1)知∠ABE=∠BEA=∠EAB=60°. ∵CD⊥AB,∴∠AOF=30°,∴AF=. 在Rt△AOF中,OF=. ∵∠CAH=∠BAO =60°,∴∠CAF =60°,∠ACF=∠AOF=30°,∴AO=AC. 又∵CD⊥AB,∴CF=. ∵AB=6,AF=,∴BF=. 在Rt△BDF中,∠DBF =60°,∠D=30°,∴BD=. 由勾股定理得:∴DF=,∴CD=. (3)设运动的时间为t秒. ①当点P、Q分别在y轴、x轴上时,,PO=QO得:,解得:(秒); ②当点P、Q都在y轴上时,,PO=QO得:,解得(秒); ③当点P在x轴上,Q在y轴且二者都没有提前停止时,,则PO=QO,得:,解得:,不合题意,舍去. ④当点P在x轴上,Q在y轴且点Q提前停止时,有,解得:(秒). 综上所述:当两动点运动时间为、、6秒时,△OPM与△OQN全等. 【点睛】本题考查了全等三角形的判定、含30°角的直角三角形的性质、等边三角形的判定与性质,坐标与图形的性质.正确分类讨论是解题的关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服