资源描述
人教小学五年级下册数学期末解答试卷及答案word
1.学生参加环保活动,五年级清运垃圾吨,比六年级少清运吨,五、六年级共清运垃圾多少吨?
2.一节课的时间是40分钟,数学课上同学们做实验用了这节课的,老师讲解用了这节课的,其余时间同学们独立做作业。同学们做作业用了这节课的几分之几?
3.据悉:2019年湖北省中小学机器人大赛设一、二、三等奖,一、二等奖的获奖人数占获奖总人数的,二、三等奖的获奖人数也占获奖总人数的,一、二、三等奖的获奖人数各占获奖总人数的几分之几?
4.学校购进一批书,其中是文艺书,是科技书,其余为故事书。
(1)故事书的本数占这批书的几分之几?
(2)科技书比文艺书多的本数占这批图书的几分之几?
5.黄河三角洲保护区内共有植物393种,其中怪柳林和柳林大约共有1万公顷,怪柳林的面积大约是柳林的4倍。保护区内大约有怪柳林和柳林各多少万公顷?
6.农场养的鸡的只数是鸭的2.5倍,鸡比鸭多600只。农场养鸡和鸭各有多少只?(列方程解答)
7.小明今年比爷爷小42岁,爷爷的年龄是小明的4.5倍。爷爷今年多少岁?(用方程解)
8.火箭的速度是超音速飞机的9倍,火箭每秒比超音速飞机飞行快4千米,火箭和超音速飞机每秒分别飞行多少千米?(列方程解答)
9.如图,大圆的直径是6厘米,小圆的直径是4厘米。大圆里的涂色部分比小圆里的涂色部分大多少?
10.如图,一条圆形跑道,AB是直径。甲乙两人分别从A、B两点出发,按箭头方向前进,他们在离A点75米的C点相遇,接着又在离B点25米的D点相遇。圆形跑道的长是多少米?
11.一块长35米,宽27米的长方形草坪中间修了4条1米宽的小路。请求出小路的面积是多少平方米?
12.李奶奶住在乡下,两个儿子都在城里上班。大儿子每6天回家一次,小儿子每9天回家一次,6月20日两个儿子同时回家后,下一次同时回家是几月几日?
13.按规定,如果个人买票需要120元,个人买票所需的钱数比每张团体票的2倍少100元,每张团体票要多少钱?(用方程解答)
14.学校买来的篮球比排球多48个,篮球的个数正好是排球的3倍。学校买来篮球和排球各多少个?(用方程解)
15.一号和二号两个仓库一共有粮食704吨,一号仓库里的粮食是二号仓库的1.2倍,两个仓库各有粮食多少吨?
16.爸爸的体重是78千克,比小明体重的3倍还多3千克。小明的体重是多少千克?(列方程解答)
17.甲乙两城相距936.2千米,一辆客车从甲城开往乙城,每小时行62.8千米,客车开出30分钟后,一辆货车从乙城出发开往甲城,每小时行50.3千米,货车开出几小时后两车相遇?
18.两列火车从相距500千米的两地同时相向开出,已知甲车每小时行110千米,乙车每小时行90千米,经过几小时两车相遇?
19.甲乙两列火车从相距1085千米的两地相对开出,经过3.5小时后两车相遇。甲车每小时行118千米,乙车每小时行多少千米?
20.上海和武汉之间的水路长1075千米,客轮在上海港,货轮在武汉港,他们同时从两港开出,相对而行,客轮每小时行45千米,货轮每小时行36千米,几小时后两船相距296千米?
(1)请画图分析,并在图中用“”标出这时客轮的大致位置。
(2)几小时后两船相距296千米?(列方程解答)
21.一个直径为16米的圆形花坛,周围有一条宽1米的小路,这条小路的面积是多少平方米?
22.有一个直径为10米的圆形水池,先在四周围上一圈不锈钢的围栏,这圈围栏长多少米?再在周围铺设一条2米宽的环形防滑垫,这条环形防滑垫需要多少平方米?
23.在一个直径是6米的圆形水池四周,修一条宽1米的石子路,这条石子路的面积是多少平方米?(请在图中标一标,画一画。)
24.幸福公园有一个直径为10米的圆形花坛,周围有一条宽1米的小路,这条小路的面积是多少平方米?
25.下面是西关家电城去年6~10月空调和冰箱的销售情况统计图。
(1)西关家电城( )月的空调销售量最多,( )月的冰箱销售量最少。
(2)西关家电城空调和冰箱的销售量( )月相差最多。
(3)7月后空调的销售量呈现( )趋势。
(4)西关家电城9月冰箱的销售量是空调的几分之几?
26.下图是汽车和火车的行程示意图,根据图中信息解答下面的问题。
(1)汽车比火车早到几分钟?
(2)汽车的速度是每分钟多少千米?
(3)火车中途停留了多长时间?
(4)除去停留时间,火车行完全程的平均速度是每分钟多少千米?
27.下图是莲花商场和宏伟商场在2017~2020年的利润统计图。
(1)2017~2020年,( )商场利润增长更快。
(2)( )年两个商场利润相差最大,相差( )万元。
(3)莲花商场利润的变化趋势是怎样的?预计2021年该商场在第一商场的利润情况会怎样?
28.下面是宏达有限公司2020年四个季度的收入与支出情况统计图。
(1)不计算,从图上可直接看出第( )季度节余(收入减去支出)最多,节余( )万元。
(2)求出2020年宏达有限公司的总节余。
1.吨
【分析】
先求出六年级清运吨数,再将两个年级清运吨数加起来即可。
【详解】
(吨)
答:五、六年级共清运垃圾吨。
【点睛】
异分母分数相加减,先通分再计算。
解析:吨
【分析】
先求出六年级清运吨数,再将两个年级清运吨数加起来即可。
【详解】
(吨)
答:五、六年级共清运垃圾吨。
【点睛】
异分母分数相加减,先通分再计算。
2.【分析】
将一节课的时间看作单位“1”,用1-做实验用了这节课的几分之几-老师讲解用了这节课的几分之几=做作业用了这节课的几分之几。
【详解】
1--
=1--
=
答:同学们做作业用了这节课的。
解析:
【分析】
将一节课的时间看作单位“1”,用1-做实验用了这节课的几分之几-老师讲解用了这节课的几分之几=做作业用了这节课的几分之几。
【详解】
1--
=1--
=
答:同学们做作业用了这节课的。
【点睛】
异分母分数相加减,先通分再计算。
3.一等奖:;二等奖:;三等奖:
【分析】
由题意,可把获奖总人数看作单位“1”,因为一、二等奖的获奖人数占获奖总人数的,则求三等奖人数的分率可列式为:1-;又已知二、三等奖的获奖人数也占获奖总人数的,
解析:一等奖:;二等奖:;三等奖:
【分析】
由题意,可把获奖总人数看作单位“1”,因为一、二等奖的获奖人数占获奖总人数的,则求三等奖人数的分率可列式为:1-;又已知二、三等奖的获奖人数也占获奖总人数的,则求一等奖人数的分率可列式为:1-;最后求二等奖人数的分率可列式为:+-1。
【详解】
三等奖人数的分率:1-=
一等奖人数的分率:1-=
二等奖人数的分率:
+-1
=-1
=
答:一、二、三等奖的获奖人数各占获奖总人数的、、。
【点睛】
在解答本题的过程中,一方面训练了分数的加减运算能力;一方面也考查了学生对于“容斥原理”的理解和掌握。
4.(1);(2)
【分析】
(1)把这批书看作单位“1”,1-文艺书的分率-科技书的分率即为故事书的本数占这批书的几分之几;
(2)科技书的分率-文艺书的分率即为科技书比文艺书多的本数占这批图书的几分
解析:(1);(2)
【分析】
(1)把这批书看作单位“1”,1-文艺书的分率-科技书的分率即为故事书的本数占这批书的几分之几;
(2)科技书的分率-文艺书的分率即为科技书比文艺书多的本数占这批图书的几分之几。
【详解】
(1)1--
=-
=
答:故事书的本数占这批书的。
(2)-=
科技书比文艺书多的本数占这批图书的。
【点睛】
异分母的分数相加减,先通分,然后再加减。
5.柳林0.2万公顷;怪柳林0.8万公顷
【分析】
怪柳林的面积=柳林的面积×4,等量关系式:怪柳林的面积+柳林的面积=1万公顷,据此解答。
【详解】
解:设保护区内大约有柳林x万公顷,则有怪柳林4x万
解析:柳林0.2万公顷;怪柳林0.8万公顷
【分析】
怪柳林的面积=柳林的面积×4,等量关系式:怪柳林的面积+柳林的面积=1万公顷,据此解答。
【详解】
解:设保护区内大约有柳林x万公顷,则有怪柳林4x万公顷。
怪柳林面积:(万公顷)
答:保护区内大约有怪柳林0.8万公顷,有柳林0.2万公顷。
【点睛】
本题也可以利用和倍公式“和÷(倍数+1)”直接求出柳林的面积。
6.鸡1000只;鸭400只
【分析】
农场养的鸡的只数=鸭的只数×2.5,等量关系式:鸡的只数-鸭的只数=600只,据此解答。
【详解】
解:设农场养鸭有x只,则养鸡有2.5x只。
2.5x-x=60
解析:鸡1000只;鸭400只
【分析】
农场养的鸡的只数=鸭的只数×2.5,等量关系式:鸡的只数-鸭的只数=600只,据此解答。
【详解】
解:设农场养鸭有x只,则养鸡有2.5x只。
2.5x-x=600
1.5x=600
1.5x÷1.5=600÷1.5
x=400
鸡的只数:400×2.5=1000(只)
答:农场养鸡有1000只,养鸭有400只。
【点睛】
设出未知数并利用等式的性质2求出鸭的只数是解答题目的关键。
7.54岁
【分析】
爷爷的年龄是小明的4.5倍,把小明今年的年龄设为未知数,则爷爷今年的年龄=小明今年的年龄×4.5;
等量关系式:爷爷今年的年龄-小明今年的年龄=42岁,据此列方程解答。
【详解】
解析:54岁
【分析】
爷爷的年龄是小明的4.5倍,把小明今年的年龄设为未知数,则爷爷今年的年龄=小明今年的年龄×4.5;
等量关系式:爷爷今年的年龄-小明今年的年龄=42岁,据此列方程解答。
【详解】
解:设今年小明的年龄是x岁,则爷爷的年龄是4.5x岁。
爷爷今年的年龄:4.5×12=54(岁)
答:爷爷今年54岁。
【点睛】
设出未知数找准题目中的等量关系式是用方程解决问题的关键。
8.5千米,0.5千米。
【分析】
根据题意可得等量关系式:火箭的速度-超音速飞机的速度=4千米,设超音速飞机的速度是x千米/秒,则火箭的速度是9x千米/秒,然后列方程解答即可。
【详解】
解:设超音速
解析:5千米,0.5千米。
【分析】
根据题意可得等量关系式:火箭的速度-超音速飞机的速度=4千米,设超音速飞机的速度是x千米/秒,则火箭的速度是9x千米/秒,然后列方程解答即可。
【详解】
解:设超音速飞机的速度是x千米/秒,则火箭的速度是9x千米/秒。
9x-x=4
8x=4
x=0.5
0.5+4=4.5(千米/秒)
答:火箭每秒飞行4.5千米,超音速飞机每秒飞行0.5千米。
【点睛】
此题考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题。
9.7平方厘米
【分析】
未涂色的部分是两圆的公共部分,求大圆里的涂色部分比小圆里的涂色部分大多少就是求大圆面积与小圆面积的差,据此解答。
【详解】
(6÷2)2×3.14-(4÷2)2×3.14
=2
解析:7平方厘米
【分析】
未涂色的部分是两圆的公共部分,求大圆里的涂色部分比小圆里的涂色部分大多少就是求大圆面积与小圆面积的差,据此解答。
【详解】
(6÷2)2×3.14-(4÷2)2×3.14
=28.26-12.56
=15.7(平方厘米)
答:大圆里的涂色部分比小圆里的涂色部分大15.7平方厘米。
【点睛】
涂色部分面积无法计算出的情况下,能够转换成求两个圆面积之差是解题关键。
10.400米
【分析】
由于甲、乙两人分别从圆形跑道直径AB两端同时出发相向而行,则第一次相遇时二人共行了半个圆周,甲行了AC=75米,即每行半个圆周,甲就行75米,第二次相遇,二人共行了1.5个圆周,
解析:400米
【分析】
由于甲、乙两人分别从圆形跑道直径AB两端同时出发相向而行,则第一次相遇时二人共行了半个圆周,甲行了AC=75米,即每行半个圆周,甲就行75米,第二次相遇,二人共行了1.5个圆周,则甲应该行:75×3=225米,即:AD=225米,又:BD=25米,所以所以半个圆周:AB=AD-BD=225-25=200(米),由此即能求出圆的周长。
【详解】
(75×3-25)×2
=(225-25)×2
=200×2
=400(米)
答:圆形跑道的长是400米。
【点睛】
明确所给条件求出圆的周长是完成本题的关键.本题通过画图分析更直观一些。
11.120平方米
【分析】
小路的面积可以看成是两条长为35米、宽为1米、两条长为27米、宽为1米的长方形面积的和,再减去4个边长为1米的正方形的面积;运用长方形的面积公式进行解答即可。
【详解】
35
解析:120平方米
【分析】
小路的面积可以看成是两条长为35米、宽为1米、两条长为27米、宽为1米的长方形面积的和,再减去4个边长为1米的正方形的面积;运用长方形的面积公式进行解答即可。
【详解】
35×1×2+27×1×2-1×1×4
=70+54-4
=120(平方米)
答:小路的面积是120平方米。
【点睛】
此题主要考查长方形面积的计算;关键是理解两条小路交叉地重复的正方形部分的面积。
12.7月8日
【分析】
根据题意可知,大儿子每6天回一次家,小儿子每9天回一次家,求出6和9的最小公倍数,即可求出再过多少天他们同时回家,然后进一步解答。
【详解】
6=2×3
9=3×3
6和9的最小
解析:7月8日
【分析】
根据题意可知,大儿子每6天回一次家,小儿子每9天回一次家,求出6和9的最小公倍数,即可求出再过多少天他们同时回家,然后进一步解答。
【详解】
6=2×3
9=3×3
6和9的最小公倍数是:2×3×3=18
6月20日经过18天是7月8日,两个儿子同时回家。
答:下一次同时回家是7月8日。
【点睛】
本题关键是求出最小公倍数,再根据最小公倍数求出其它问题。
13.110元
【分析】
等量关系式:每张团体票的钱数×2-100元=每张个人票的钱数。
【详解】
解:设每张团体票要x元。
2x-100=120
2x=120+100
2x=220
2x÷2=220÷2
解析:110元
【分析】
等量关系式:每张团体票的钱数×2-100元=每张个人票的钱数。
【详解】
解:设每张团体票要x元。
2x-100=120
2x=120+100
2x=220
2x÷2=220÷2
x=110
答:每张团体票要110元。
【点睛】
根据题意找出等量关系式是解答题目的关键。
14.排球:24个;篮球72个
【分析】
根据题目可知,可以设排球的数量为x个,则篮球的个数是3x个,由于篮球的个数-排球的个数=48,把数代入等式即可列方程,再解方程即可。
【详解】
解:设排球的数量有
解析:排球:24个;篮球72个
【分析】
根据题目可知,可以设排球的数量为x个,则篮球的个数是3x个,由于篮球的个数-排球的个数=48,把数代入等式即可列方程,再解方程即可。
【详解】
解:设排球的数量有x个,则篮球的个数为3x个。
3x-x=48
2x=48
x=48÷2
x=24
24×3=72(个)
答:学校买来排球24个,篮球72个。
【点睛】
此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子表示,然后列方程解答。
15.一号仓库:384吨;二号仓库:320吨
【分析】
设二号仓库的粮食有x吨,则一号仓库里的粮食有1.2x吨,根据“一号和二号两个仓库一共有粮食704吨”列出方程求解即可。
【详解】
解:设二号仓库的粮
解析:一号仓库:384吨;二号仓库:320吨
【分析】
设二号仓库的粮食有x吨,则一号仓库里的粮食有1.2x吨,根据“一号和二号两个仓库一共有粮食704吨”列出方程求解即可。
【详解】
解:设二号仓库的粮食有x吨,则一号仓库里的粮食有1.2x吨。
1.2x+x=7.4
2.2x=704
x=320
320×1.2=384(吨)
答:一号仓库里的粮食有384吨,二号仓库的粮食有320吨。
【点睛】
本题主要考查列方程解含有两个未知数的问题,找出等量关系式是解题的关键。
16.25千克
【分析】
根据题意知本题的数量关系:小明的体重乘以3再加上3等于爸爸的体重,据此数量关系可列方程解答。
【详解】
解:设小明的体重是x千克,
3x+3=78
3x=78-3
3x=75
x
解析:25千克
【分析】
根据题意知本题的数量关系:小明的体重乘以3再加上3等于爸爸的体重,据此数量关系可列方程解答。
【详解】
解:设小明的体重是x千克,
3x+3=78
3x=78-3
3x=75
x=25
答:小明的体重是25千克。
【点睛】
本题的重点是找出题目中的数量关系再列方程进行解答。
17.8小时
【分析】
首先用两地之间的距离减去客车30分钟行驶的路程,求出两车共同行驶的路程是多少;然后用它除以两车的速度之和,求出货车开出几时后两车相遇即可。
【详解】
30分钟=0.5小时
(936
解析:8小时
【分析】
首先用两地之间的距离减去客车30分钟行驶的路程,求出两车共同行驶的路程是多少;然后用它除以两车的速度之和,求出货车开出几时后两车相遇即可。
【详解】
30分钟=0.5小时
(936.2-62.8×0.5)÷(62.8+50.3)
=904.8÷113.1
=8(小时)
答:货车开出8小时后两车相遇。
【点睛】
此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,解答此题的关键是求出两车共同行驶的路程以及两车的速度之和是多少。
18.5小时
【分析】
等量关系式:(甲车速度+乙车速度)×相遇时间=总路程,据此列式计算。
【详解】
解:设经过x小时两车相遇。
(110+90)x=500
200x=500
x=500÷200
x=2
解析:5小时
【分析】
等量关系式:(甲车速度+乙车速度)×相遇时间=总路程,据此列式计算。
【详解】
解:设经过x小时两车相遇。
(110+90)x=500
200x=500
x=500÷200
x=2.5
答:经过2.5小时两车相遇。
【点睛】
根据相遇问题计算公式列出等量关系式是解答本题的关键。
19.192千米
【分析】
用甲车的速度乘3.5小时,求出甲车行的路程。再利用减法求出乙车行的路程。最后,用乙车的路程除以3.5小时,求出乙车的速度即可。
【详解】
(1085-118×3.5)÷3.5
解析:192千米
【分析】
用甲车的速度乘3.5小时,求出甲车行的路程。再利用减法求出乙车行的路程。最后,用乙车的路程除以3.5小时,求出乙车的速度即可。
【详解】
(1085-118×3.5)÷3.5
=(1085-413)÷3.5
=672÷3.5
=192(千米)
答:乙车每小时行192千米。
【点睛】
本题考查了相遇问题,相遇时甲乙两车的路程和恰好等于两地的距离。
20.(1)见详解
(2)约9.6小时或16.9小时
【分析】
(1)根据题意,两艘船相距296千米时有两种情况,一种情况是还没相遇相距296千米,另一种情况是相遇后又相距296千米;画出上海到武汉两地的
解析:(1)见详解
(2)约9.6小时或16.9小时
【分析】
(1)根据题意,两艘船相距296千米时有两种情况,一种情况是还没相遇相距296千米,另一种情况是相遇后又相距296千米;画出上海到武汉两地的距离,在图上标出两船相距296千米,客轮的大致位置;
(2)根据题意,设:x小时候两船相距296千米,客轮每小时行驶45千米,x小时行驶45x千米,货轮每小时行驶36千米,x小时行驶36x千米,两船还没相遇相距296千米,客轮x小时行驶的距离+货轮x小时行驶的距离+296千米=上海到武汉的距离;相遇后又相距296千米,客轮x小时行驶的距离+货轮x小时行驶的距离=上海到武汉的距离+296千米;据此列方程解答。
【详解】
(1)第一种情况,当两艘船没有相遇相距296千米时客轮的位置如下图:
第二种情况,当两艘船相遇后又相距296千米时客轮的位置如下图:
(2)第一种情况:当两艘船没有相遇相距296千米时,
解:设x小时后两船相距296千米
45x+36x+296=1075
81x=1075-296
81x=779
x=779÷81
x≈9.6
答:9.6小时两船相距296千米。
第二种情况,当两艘船相遇后又相距296千米时,
解:设x小时后两船相距296千米,
45x+36x=1075+296
81x=1371
x=1371÷81
x≈16.9
答:16.9小时两船相遇后又相距296千米。
【点睛】
本题考查方程的实际应用,根据题意找出相关的关系量,列方程,解方程。解答本题应考虑两种情况的相距。
21.38平方米
【详解】
16÷2=8(米)
3.14×(8+1)2-3.14×82=53.38(平方米)
答:这条小路的面积是53.38平方米.
解析:38平方米
【详解】
16÷2=8(米)
3.14×(8+1)2-3.14×82=53.38(平方米)
答:这条小路的面积是53.38平方米.
22.4米;75.36平方米
【分析】
根据圆的周长C=πd求出这圈围栏长;根据圆环的面积=πR2-πr2求出这条环形防滑垫的面积。
【详解】
3.14×10=31.4(米)
答:这圈围栏长31.4米。
解析:4米;75.36平方米
【分析】
根据圆的周长C=πd求出这圈围栏长;根据圆环的面积=πR2-πr2求出这条环形防滑垫的面积。
【详解】
3.14×10=31.4(米)
答:这圈围栏长31.4米。
3.14×(10÷2+2)2-3.14×(10÷2)2
=3.14×49-3.14×25
=3.14×24
=75.36(平方米)
答:这条环形防滑垫需要75.36平方米。
【点睛】
考查了圆的周长和圆环的面积的实际应用,计算时要认真。
23.98平方米
【分析】
根据求环形面积的公式,外圆面积-内圆面积=环形面积,已知内圆直径是6米,环宽是1米,先求出内圆半径和外圆半径,再利用环形面积公式解答。
【详解】
如下图:
内圆半径是:6÷2
解析:98平方米
【分析】
根据求环形面积的公式,外圆面积-内圆面积=环形面积,已知内圆直径是6米,环宽是1米,先求出内圆半径和外圆半径,再利用环形面积公式解答。
【详解】
如下图:
内圆半径是:6÷2=3(米);
3.14×[(3+1)2-32]
=3.14×[16-9]
=3.14×7
=21.98(平方米)
答:石子路的面积有21.98平方米。
【点睛】
此题考查了环形面积的实际应用,直接根据环形面积的计算公式解答即可。
24.54平方米
【分析】
由题意可知:这条小路的面积就是内圆半径为10÷2=5米,外圆半径是5+1=6米的圆环的面积;带入数据计算即可。
【详解】
3.14×(10÷2+1)2-3.14×(10÷2)2
解析:54平方米
【分析】
由题意可知:这条小路的面积就是内圆半径为10÷2=5米,外圆半径是5+1=6米的圆环的面积;带入数据计算即可。
【详解】
3.14×(10÷2+1)2-3.14×(10÷2)2
=3.14×36-3.14×25
=3.14×11
=34.54(平方米)
答:这条小路的面积是34.54平方米。
【点睛】
本题主要考查圆环面积公式的实际应用。
25.(1)7;10
(2)7
(3)下降
(4)
【分析】
(1)(2)(3)观察统计图,直接填空即可;
(4)9月冰箱和空调的销售量分别是25台、40台,据此利用除法求出冰箱的
解析:(1)7;10
(2)7
(3)下降
(4)
【分析】
(1)(2)(3)观察统计图,直接填空即可;
(4)9月冰箱和空调的销售量分别是25台、40台,据此利用除法求出冰箱的销售量是空调的几分之几。
【详解】
(1)西关家电城7月的空调销售量最多,10月的冰箱销售量最少。
(2)西关家电城空调和冰箱的销售量7月相差最多。
(3)7月后空调的销售量呈现下降趋势。
(4)25÷40=,所以,西关家电城9月冰箱的销售量是空调的。
【点睛】
本题考查了复式折线统计图的应用,能从统计图中获取有用信息是解题的关键。
26.(1)5分钟
(2)0.6千米
(3)10分钟
(4)0.75千米
【分析】
(1)观察统计图,用火车到达时间-汽车到达时间即可;
(2)求出汽车行驶时间,用路程÷时间=速度,列式解答;
(3)折线
解析:(1)5分钟
(2)0.6千米
(3)10分钟
(4)0.75千米
【分析】
(1)观察统计图,用火车到达时间-汽车到达时间即可;
(2)求出汽车行驶时间,用路程÷时间=速度,列式解答;
(3)折线水平不变表示停留,求出时间差即可;
(4)求出火车实际行驶时间,用路程÷时间=速度,列式解答。
【详解】
(1)8:25-8:20=5(分钟)
答:汽车比火车早到5分钟。
(2)8:20-7:55=25(分钟)
15÷25=0.6(千米)
答:汽车的速度是每分钟0.6千米。
(3)8:10-8:00=10(分钟)
答:火车中途停留了10分钟。
(4)8:25-7:55=30(分钟)
30-10=20(分钟)
15÷20=0.75(千米)
答:除去停留时间,火车行完全程的平均速度是每分钟0.75千米。
【点睛】
折线统计图不仅能看清数量的多少,还能通过折线的上升和下降表示数量的增减变化情况。复式折线统计图表示2个及以上的量的增减变化情况。
27.(1)莲花
(2)2018;30
(3)莲花商场的利润持续增长。2021年该商场的利润可能会达到140万元。
【分析】
分析折线统计图后可知:(1)2017~2020年,莲花商场利润增长更快。
(
解析:(1)莲花
(2)2018;30
(3)莲花商场的利润持续增长。2021年该商场的利润可能会达到140万元。
【分析】
分析折线统计图后可知:(1)2017~2020年,莲花商场利润增长更快。
(2)2018年莲花商场利润是30万,宏伟商场利润是60万,两者相差30万。是利润相差最大的一年。
(3)莲花商场的利润将持续增长。2021年该商场的利润可能会达到140万元。
【详解】
(1)2017~2020年,莲花商场利润增长更快。
(2)2018年两个商场利润相差最大,相差30万元。
(3)莲花商场的利润将持续增长。2021年该商场的利润可能会达到140万元。
(答案不唯一)
【点睛】
能按要求从折线统计图中找到相关的信息进行数据的分析、处理、计算是解答本题的关键。
28.(1)四;400
(2)900万元
【分析】
(1)根据统计图可知,第四季度时,表示收入和支出的两点相距的最远,说明节余最多,用第四季度的收入减去支出即可求出节余;
(3)用总收入减去总支出即可。
解析:(1)四;400
(2)900万元
【分析】
(1)根据统计图可知,第四季度时,表示收入和支出的两点相距的最远,说明节余最多,用第四季度的收入减去支出即可求出节余;
(3)用总收入减去总支出即可。
【详解】
(1)900-500=400(万元);
从图上可直接看出第四季度节余最多,节余400万元;
(2)(800+400+500+900)-(600+300+300+500)
=2600-1700
=900(万元);
答:2020年宏达有限公司的总节余为900万元。
【点睛】
理解统计图中的数学信息是解答本题的关键,明确点和线段表示的意义。
展开阅读全文