收藏 分销(赏)

人教版初二上学期压轴题模拟数学检测试题带答案[001].doc

上传人:天**** 文档编号:1776505 上传时间:2024-05-09 格式:DOC 页数:23 大小:1.15MB
下载 相关 举报
人教版初二上学期压轴题模拟数学检测试题带答案[001].doc_第1页
第1页 / 共23页
人教版初二上学期压轴题模拟数学检测试题带答案[001].doc_第2页
第2页 / 共23页
人教版初二上学期压轴题模拟数学检测试题带答案[001].doc_第3页
第3页 / 共23页
人教版初二上学期压轴题模拟数学检测试题带答案[001].doc_第4页
第4页 / 共23页
人教版初二上学期压轴题模拟数学检测试题带答案[001].doc_第5页
第5页 / 共23页
点击查看更多>>
资源描述

1、人教版初二上学期压轴题模拟数学检测试题带答案1如图1,在平面直角坐标系中,点A(a,0)、点B(b,0)为x轴上两点,点C在y轴的正半轴上,且a,b满足等式(1)_;(2)如图2,若M,N是OC上的点,且,延长BN交AC于P,判断APN的形状并说明理由;(3)如图3,若,点D为线段BC上的动点(不与B,C重合),过点D作于E,BG平分ABC交线段DE于点G,连AD,F为AD的中点,连接CG,CF,FG试说明,CG与FG的数量关系2已知,A(0,a),B(b,0),点为x轴正半轴上一个动点,ACCD,ACD90(1)已知a,b满足等式a +b+b2+4b4求A点和B点的坐标;如图1,连BD交y轴

2、于点H,求点H的坐标;(2)如图2,已知a+b=0,OCOB,作点B关于y轴的对称点E,连DE,点F为DE的中点,连OF和CF,请补全图形,探究OF与CF有什么数量和位置关系,并证明你的结论3等边中,点、分别在边、上,且,连接、交于点(1)如图1,求的度数;图1(2)连接,若,求的值;(3)如图2,若点为边的中点,连接,且,则的大小是_图24如图,在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足(1)直接写出_,_;(2)连接AB,P为内一点,如图1,过点作,且,连接并延长,交于求证:;如图2,在的延长线上取点,连接若,点P(2n,n),试求点的坐标5已知,(1)若,作,点在内如

3、图1,延长交于点,若,则的度数为 ;如图2,垂直平分,点在上,求的值;(2)如图3,若,点在边上,点在边上,连接,求的度数6已知在四边形ABCD中,ABC+ADC=180,AB=BC(1)如图1,若BAD=90,AD=2,求CD的长度;(2)如图2,点P、Q分别在线段AD、DC上,满足PQ=AP+CQ,求证:PBQ=90ADC;(3)如图3,若点Q运动到DC的延长线上,点P也运动到DA的延长线上时,仍然满足PQ=AP+CQ,则(2)中的结论是否成立?若成立,请给出证明过程,若不成立,请写出PBQ与ADC的数量关系,并给出证明过程.7ABC、DPC都是等边三角形(1)如图1,求证:APBD;(2

4、)如图2,点P在ABC内,M为AC的中点,连PM、PA、PB,若PAPM,且PB2PM求证:BPBD;判断PC与PA的数量关系并证明8如图1已知点A,B分别在坐标轴上,点C(3,3),CABA于点A,且BACA,CA,CB分别交坐标轴于D,E(1)填空:点B的坐标是 ;(2)如图2,连接DE,过点C作CHCA于C,交x轴于点H,求证:ADBCDE;(3)如图3,点F(6,0),点P在第一象限,连PF,过P作PMPF交y轴于点M,在PM上截取PNPF,连PO,过P作OPG45交BN于G求证:点G是BN中点【参考答案】2(1)0(2)等腰三角形,见解析(3)CG=2FG【分析】(1)由可得,得出a

5、、b的值即可求解;(2)由OC垂直平分AB可得,再由外角可得 ,结合已知条件,等量代换即可得到结论;解析:(1)0(2)等腰三角形,见解析(3)CG=2FG【分析】(1)由可得,得出a、b的值即可求解;(2)由OC垂直平分AB可得,再由外角可得 ,结合已知条件,等量代换即可得到结论;(3)先延长GF至点M,使FM=FG,连接CG、CM、AM,可证,得到,再结合已知条件得到,可得是等腰三角形,利用等腰三角形的性质得出,最后证明 为等边三角形,即可得到结论(1) 解得 (2) 是等腰三角形,理由如下:由点A(a,0)、点B(b,0)为x轴上两点,且可得,OA=OB OC垂直平分AB , 是等腰三角

6、形(3),理由如下:如图,延长GF至点M,使FM=FG,连接CG、CM、AM F为AD的中点 在和中 垂直平分 ,BG平分 为等边三角形, 在和中 即是等腰三角形 为等边三角形 在 中, 【点睛】本题是三角形的综合题目,考查了非负性求和、线段垂直平分线的性质、外角的性质、全等三角形的判定和性质、等腰三角形的性质、等边三角形的判定和性质及直角三角形的性质,涉及知识点多,能够合理添加辅助线并综合运用知识点是解题的关键3(1)A(0,2),B(-2,0);H(0,-2);(2)CFOF,CF=OF,证明见解析【分析】(1)利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案;过C作y解析

7、:(1)A(0,2),B(-2,0);H(0,-2);(2)CFOF,CF=OF,证明见解析【分析】(1)利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案;过C作y轴垂线交BA的延长线于E,然后证明CEACBD,得到OB=OH,即可得到答案;(2)由题意,先证明DFGEFO,然后证明DCGACO,得到OCG是等腰直角三角形,再根据三线合一定理,即可得到结论成立【详解】解:(1),A(0,2),B(2,0);过C作x轴垂线交BA的延长线于E,OA=OB=2,AOB=90,AOB是等腰直角三角形,ABO=45,ECBC,BCE是等腰直角三角形,BC=EC,BCE=90=ACD,AC

8、E=DCB,AC=DC,CEACBD,CBD=E=45,OH=OB=2,H(0,2);(2)补全图形,如图:点B、E关于y轴对称,OB=OE,a+b=0,即OA=OB=OE延长OF至G使FG=OF,连DG,CG,OF=FG,OFE=DFG,EF=DFDFGEFODG=OE=OA,DGF=EOFDGOECDG=DCO;ACO+CAO=ACO+DCO=90,DCO=CAO;CDG=DCO=CAO;CD=AC,OA=DGDCGACOOC=GC,DCG=ACOOCG=90,COF=45,OCG是等腰直角三角形,由三线合一定理得CFOFOCF=COF=45,CF=OF;【点睛】本题考查了等腰三角形的判定

9、和性质,全等三角形的判定和性质,轴对称的性质,非负性的应用,解题的关键是熟练掌握所学的知识,正确的作出辅助线进行解题4(1);(2);(3)【分析】(1)由是等边三角形,可得出,再利用,可证,得出,由可求出,最后由补角定义求出.(2)在上取点,使,由可证,再利用,可证明,进而求出,再用补角的性质得知,在解析:(1);(2);(3)【分析】(1)由是等边三角形,可得出,再利用,可证,得出,由可求出,最后由补角定义求出.(2)在上取点,使,由可证,再利用,可证明,进而求出,再用补角的性质得知,在中利用外角的性质可求出,进而证出为等腰三角形,最后可证出即可求解.(3)延长至,使为等边三角形,延长交于

10、,可得出,进而得出,利用角的和差得出,则证出,进而证出,再利用,证出为等边三角形,进而证出.【详解】(1)是等边三角形,在和中,(2)在上取点,使由(1)知,又,在和中,(3)提示:目测即得答案详细理由如下:由(1)知延长至,使为等边三角形延长交于 ,在和中, ,, 在和中, ,为等边三角形, 【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等边三角形的判定和性质,熟练掌握全等三角形的判定和性质及等边三角形的判定和性质是解题的关键.5(1)3,;(2)见解析;的坐标为(,)【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可;(2)连接AC,过点B作BNBP,交

11、CP的延长线于点N,利用SAS证明解析:(1)3,;(2)见解析;的坐标为(,)【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可;(2)连接AC,过点B作BNBP,交CP的延长线于点N,利用SAS证明OPBOCA,再证明BNP为等腰直角三角形,利用AAS证明ACDBND,即可证明AD=DB;作出如图所示的辅助线,证明BMP为等腰直角三角形,利用AAS证明PBFMPE,求得E(2n,n) ,M(3n3,n),证明点M,E关于y轴对称,得到3n3+2n=0,即可求解【详解】(1),解得:,故答案为:3,;(2)连接AC,COP=AOB=90,COP-AOP =AOB-AOP,

12、在OPB和OCA中,OPBOCA(SAS),AC=BP,OCA=OPB=90,过点B作BNBP,交CP的延长线于点N,COP=90,OP=OC,OCP=OPC=ACP=45,OPB=90,BPN=45,BNP为等腰直角三角形,BPN=N=45,BN=BP=AC,在ACD和BND中,ACDBND(AAS),AD=DB;AOB=90,AO=OB,AOB为等腰直角三角形,OBA=45,MBO=ABP,MBO+OBP=ABP+OBP=OBA=45,MBP=45,OPBP,BMP为等腰直角三角形,MP=BP,过点P作y轴的平行线EF,分别过M,B作MEEF于E,BFEF于F,EF交x轴于G,ME交y轴于

13、H,连接OE,MPE+EMP=MPE +FPB=90,EMP=FPB,在PBF和MPE中,PBFMPE(AAS),BF=EP,PF=ME,P(2n,n),BF=EP=EH=2n,PG=EG=n,PF=ME=3n,MH=ME-EH=3n2n=33n,E(2n,n) ,M(3n3,n),点P,E关于x轴对称,OE=OP,OEP=OPE,同理OM=OE,点M,E关于y轴对称,3n3+2n=0,解得,即点M的坐标为(,)【点睛】本题考查了坐标与图形、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用全等三角形的性质解决问题6(1)1

14、5;(2)【分析】(1)根据等腰直角三角形的性质,连接,得,所对的直角边是斜边的一半,可得,所以可得,和是等腰三角形,由外角性质计算可得;构造“一线三垂直”模型,证解析:(1)15;(2)【分析】(1)根据等腰直角三角形的性质,连接,得,所对的直角边是斜边的一半,可得,所以可得,和是等腰三角形,由外角性质计算可得;构造“一线三垂直”模型,证明三角形,利用面积比等于等高的三角形的底边的比,结合已知条件即可解得(2)构造等边,通过证明,等边代换,得出等腰三角形,代入角度计算即得【详解】(1)连接,在,因为,故答案为:过作交延长线于,连接垂直平分,故答案为:;(2)以AB向下构造等边,连接DK,延长

15、AD,BK交于点T,等边中,在和中,等边三角形三线合一可知,BD是边AK的垂直平分线,故答案为: 【点睛】考查了等腰直角三角形的性质,外角的性质,等腰三角形的判定和性质,构造等边三角形的方法证明全等,全等三角形的性质应用很关键,熟记几何图形的性质和判定是解决图形问题的重要方法依据7(1)CD=2;(2)证明见解析;(3)(2)中结论不成立,应该是:,理由见解析.【分析】(1)如图1,利用HL证得两个直角三角形全等:RtBADRtBCD,则其对应边相等:AD=DC=2解析:(1)CD=2;(2)证明见解析;(3)(2)中结论不成立,应该是:,理由见解析.【分析】(1)如图1,利用HL证得两个直角

16、三角形全等:RtBADRtBCD,则其对应边相等:AD=DC=2;(2)如图2,延长DC,在上面找一点K,使得CK=AP,连接BK,通过证BPABCK(SAS)得到:1=2,BP=BK然后由全等三角形PBQBKQ的对应角相等求得PBQ=ABC,结合已知条件“ABC+ADC=180”可以推知PBQ=90-ADC;(3)(2)中结论不成立,应该是:PBQ=90+ADC如图3,在CD延长线上找一点K,使得KC=AP,连接BK,构建全等三角形:BPABCK(SAS),由该全等三角形的性质和全等三角形的判定定理SSS证得:PBQBKQ,则其对应角相等:PBQ=KBQ,结合四边形的内角和是360度可以推得

17、:PBQ=90+ADC【详解】(1),在RtBAD和RtBCD中,RtBADRtBCD(HL)AD=DC=2DC=2(2)如图,延长DC,在上面找一点K,使得CK=AP,连接BK在BPA和BCK中BPABCK(SAS),BP=BKPQ=AP+CQPQ=QK在PBQ和BKQ中PBQBKQ(SSS) (3)(2)中结论不成立,应该是:在CD延长线上找一点K,使得KC=AP,连接BK在BPA和BCK中BPABCK(SAS),BP=BKPQ=AP+CQPQ=QK在PBQ和BKQ中PBQBKQ(SSS)【点睛】本题考查了全等三角形的判定与性质在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要

18、时添加适当辅助线构造三角形.8(1)证明过程见解析;(2)证明过程见解析;PC=2PA,理由见解析【分析】(1)证明BCDACP(SAS),可得结论;(2)如图2中,延长PM到K,使得MK=PM,连接C解析:(1)证明过程见解析;(2)证明过程见解析;PC=2PA,理由见解析【分析】(1)证明BCDACP(SAS),可得结论;(2)如图2中,延长PM到K,使得MK=PM,连接CK证明AMPCMK(SAS),推出MP=MK,AP=CK,APM=K=90,再证明PDBPCK(SSS),可得结论;结论:PC=2PA想办法证明DPB=30,可得结论(1)证明:如图1中,ABC,CDP都是等边三角形,C

19、B=CA,CD=CP,ACB=DCP=60,BCD=ACP,在BCD和ACP中,BCDACP(SAS),BD=AP;(2)证明:如图2中,延长PM到K,使得MK=PM,连接CKAPPM,APM=90,在AMP和CMK中,AMPCMK(SAS),MP=MK,AP=CK,APM=K=90,同法可证BCDACP,BD=PA=CK,PB=2PM,PB=PK,PD=PC,PDBPCK(SSS),PBD=K=90,PBBD解:结论:PC=2PAPDBPCK,DPB=CPK,设DPB=CPK=x,则BDP=90-x,APC=CDB,90+x=60+90-x,x=30,DPB=30,PBD=90,PD=2BD

20、,PC=PD,BD=PA,PC=2PA【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质,等边三角形的性质,直角三角形30角的性质等知识,解题的关键是学会添加常用辅助线,关注全等三角形解决问题9(1)(0,6)(2)见解析(3)见解析【分析】(1)作CMx轴于M,求出CM= CN= 2,证明BAOACM,推出AO= CM= 2,OB=AM=4,即可得出答案;(2)在解析:(1)(0,6)(2)见解析(3)见解析【分析】(1)作CMx轴于M,求出CM= CN= 2,证明BAOACM,推出AO= CM= 2,OB=AM=4,即可得出答案;(2)在BD上截取BF= AE,连AF,证BAFCA

21、E,证AFDCED,即可得出答案;(3)作EOOP交PG的延长线于E,连接EB、EN、PB,只要证明四边形ENPB是平行四边形就可以了(1)解:过点C作CGx轴于G,如图所示:C(3,3),CG3,OG3,BOACGA90,ABO+BAOBAO+CAG90,ABOCAG,又ABAC,ABOCAG(AAS),AOCG3,OBAGAO+OG6,点B的坐标是(0,6)(2)证明:如图,过点C作CGx轴于G,CFy轴于F,则CFAO同(1)得:ABOCAG(AAS),AOCG3,CF3,AOCF,CFAODAODCF,AODCFD,AODCFD(ASA),ADCD,CABA,CHCA,BADACH90

22、,又ABOCAG,ABAC,BADACH(ASA),ADCH,ADBAHCCDCH,BACA,ABC是等腰直角三角形,ACB45,HCE90ACB45,DCEHCE45,又CECE,DCEHCE(SAS),CDECHE,ADBCDE(3)证明:过点O作OKOP交PG延长线于K,连接BK、NF,过点P作PLNF于L则OPK是等腰直角三角形,OKPOPK45,OKOP,PNPF,PNF是等腰直角三角形,PFNPNF45,PLNF,FPL45,则OPFOPL+45,GPNOPL45MPO,KOB+BOPFOP+BOP90,KOBFOP,又OBOF6,OKBOPF(SAS),KBPFPN,OKB45+GKBOPFOPL+45,GKBOPLGPN,又KGBPGN,KBGPNG(SAS),BGNG,即点G为BN的中点【点睛】本题是三角形综合题目,考查了全等三角形的判定和性质、坐标与图形性质、等腰直角三角形的判定与性质、平行线的判定与性质、直角三角形的性质等知识,本题综合性强,有一定难度,证明三角形全等是解题的关键,属于中考常考题型

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服