收藏 分销(赏)

燃烧热的测定教学文案.docx

上传人:精**** 文档编号:1758456 上传时间:2024-05-08 格式:DOCX 页数:9 大小:142.90KB
下载 相关 举报
燃烧热的测定教学文案.docx_第1页
第1页 / 共9页
燃烧热的测定教学文案.docx_第2页
第2页 / 共9页
燃烧热的测定教学文案.docx_第3页
第3页 / 共9页
燃烧热的测定教学文案.docx_第4页
第4页 / 共9页
燃烧热的测定教学文案.docx_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、此文档仅供收集于网络,如有侵权请联系网站删除内容提要:本实验利用氧弹式热量计,以苯甲酸为标准物,测量物质燃烧时系统温度随时间的变化曲线,经过雷诺校正和相关计算,得到16.3,102.20 kPa下,热量计的水当量为(1.870.07)103 JK-1,进而得到蔗糖的燃烧热为(-16.40.1) kJg-1,与文献值比较误差为-0.6 %。对实验的讨论给出了可能引起误差的原因,并说明了雷诺校正的原理及意义。1 引言(略)2 实验部分2.1 仪器和药品GR 3500型氧弹式热量计,氧气钢瓶,压片机,SWC- D型温差测量仪,RF-K1型控制箱,数字万用表,秒表,分析天平(万分之一),电子天平(百分

2、之一),研钵,容量瓶(1000 mL,2000 mL)。镍丝,棉线,苯甲酸(分析纯),蔗糖(分析纯)。2.2 实验步骤2.2.1 水当量的测量取一段镍丝,称量其质量m1,紧缠于氧弹两电极上。取一段棉线,称量其质量m2。称取约1.0 g研磨过的苯甲酸,用专用压片机压片。用棉线绑住压片,称量总质量m3后置于燃烧皿中,棉线两端缠绕在镍丝上。旋紧氧弹盖,充入约1 MPa氧气,随即放气。重复三次,最后充入1.0 MPa氧气。用数字万用表测得两电极间的电阻为1215 ,符合要求。将氧弹放入热量器中。从实验室中的水箱内取3000.0 mL水加入热量器内筒,关上热量器盖,插入温差测量仪探头,启动控制箱开始搅拌

3、。待水温稳定上升后,将温差测量仪采零,开始计时,每隔30 s记录一次温差。10 min后点火,每15 s记录一次温差。待温差基本保持不变后停止计时。停止搅拌,取出温差测量仪探头,打开盖子,取出氧弹,泄去废气,打开氧弹,取出剩余镍丝并称量其质量m4。2.2.2 蔗糖燃烧热的测量擦干氧弹内外壁和热量器内筒,清理燃烧皿中的残渣。用2.2.1所述方法测量蔗糖的温差-时间变化曲线,进而计算燃烧热。3 数据处理3.1 实验数据实验过程中的温度和大气压见封面。两种物质的各质量测定数据见表1。表1 质量测定数据样品初始镍丝质量m1/g剩余镍丝质量m4/g燃烧镍丝质量m0=m1-m4/g棉线质量m2/g样品及棉

4、线总质量m3/g样品质量G=m3-m2/g苯甲酸0.01610.00510.01100.02411.12881.1047蔗糖0.01550.0209 燃烧结束后取出氧弹,燃烧皿内壁和剩余镍丝上附着有黑色光亮小球,与剩余镍丝一同称量得此数据,相关处理和讨论见3.4、4.3。-0.01691.04821.0313分析天平的精度为0.0001 g,即m1=m2=m3=m4=0.0001 g,则m0=G=0.0002 g。两种物质燃烧前后的温差-时间数据见表2、表3。表2 苯甲酸温差-时间数据时间t/s温差T/K时间t/s温差T/K时间t/s温差T/K00.0006150.0389302.046300

5、.0026300.1709452.056600.0026450.4049602.064900.0036600.7039902.0781200.0036750.94910202.0901500.0056901.20410502.1021800.0067051.41410802.1092100.0077201.55811102.1122400.0077351.66311402.1142700.0087501.74511702.1183000.0097651.79512002.1243300.0107801.84412302.1263600.0107951.87912602.1273900.0128

6、101.90912902.1294200.0138251.93813202.1294500.0148401.95913502.1304800.0158551.97913802.1305100.0168701.99614102.1305400.0168852.01314402.1315700.0189002.02414702.131600 点火。0.0189152.03615002.131表3 蔗糖温差-时间数据时间t/s温差T/K时间t/s温差T/K时间t/s温差T/K00.0016150.0399601.226300.0076300.2029901.234600.0116450.443102

7、01.240900.0146600.63310501.2461200.0176750.75810801.2501500.0206900.87311101.2521800.0217050.94911401.2542100.0227201.00111701.2572400.0237351.03912001.2602700.0247501.07412301.2613000.0267651.09012601.2613300.0277801.11012901.2633600.0277951.12813201.2633900.0278101.14613501.2644200.0288251.1591380

8、1.2654500.0298401.17114101.2654800.0318551.17914401.2645100.0318701.18814701.2655400.0318851.19715001.2645700.0319001.204600 点火。0.0329301.2173.2 雷诺校正3.2.1 苯甲酸根据点火时间和温差变化情况,选取燃烧前和燃烧后的两个平台区时间范围为0600 s和1080 s1500 s,分别做线性拟合,回归方程为: Ti=(3.010.06)10-5t+(2.122.05)10-4 r2=0.99Tf=(5.00.7)10-5t+(2.0590.009) r2

9、=0.79利用Origin 9.0的Integrate功能直接对T-t曲线从ti = 600 s积分到tf = 1080 s,其结果为S=titfTdt=796.14。根据雷诺校正的原理,应当找到时间t0(tit0tf),使得:tit0(T-Ti)dt=t0tf(Tf-T)dt上式化简为:S=titfTdt=t0tfTfdt+tit0Tidt=12(ki-kf)t02+bi-bft0-12(kiti2-kftf2)-(biti-bftf)其中ki、kf、bi、bf分别为两回归方程的斜率和截距。此式为t0的一元二次方程,其可行解为:t0=702.49 s代入两回归方程,可得燃烧前后的校正温度分别

10、为:Ti=0.021 KTf=2.080 K由此求得燃烧前后的温度差为:T=2.059 K标准差分别为:Ti=(t0ki)2+bi2=4.710-4 KTf=(t0kf)2+bf2=0.010 KT=Ti2+Tf2=0.010 K苯甲酸的T-t曲线和雷诺校正线见图1。图1 苯甲酸的T-t曲线和雷诺校正线3.2.2 蔗糖蔗糖数据的雷诺校正与3.2.1所述相似,校正过程中的重要参数见表4、表5,T-t曲线和雷诺校正线见图2。需要特别说明的是蔗糖燃烧前平台期时间范围的选取。实验过程中,由于操作不慎,第一次测量蔗糖的T-t曲线失败。因时间仓促,未能等到氧弹冷却至室温就重新架好装置开始实验,故开始的温差

11、数据变化较快,是温度较高的氧弹与热量器内筒中处于室温下的水的平衡过程。做雷诺校正时,燃烧前平台期的选取除掉了这一部分数据。表4 蔗糖的平台期回归方程参数选取平台期时间范围斜率k截距br2燃烧前150 s 600 s(2.70.1)10-50.01680.00060.96燃烧后1080 s 1500 s(3.30.4)10-51.2170.0060.80表5 积分及校正结果积分下限ti/s积分上限tf/s积分St0/sTi/KTf/KT/K6001080491.655687.880.03540.00091.2350.0071.2000.007图2 蔗糖的T-t曲线和雷诺校正线3.3 热量器水当量

12、的计算苯甲酸完全燃烧的化学方程式为:C7H6O2s+152O2g7CO2g+3H2Ol则n=-0.5 mol。已知苯甲酸分子的摩尔质量Mr=122.12 gmol-1,恒压燃烧热Qp=-26460 Jg-1,北京大学化学学院物理化学实验教学组,物理化学实验(第四版),2002,北京大学出版社,33.则可计算恒容燃烧热QV=Qp-nRTMr=-26460-0.58.314273.15+16.3122.12Jg-1=-26450 Jg-1镍丝的恒容燃烧热QV镍=-3243 Jg-1,棉线的恒容燃烧热QV棉=-16736 Jg-1,北京大学化学学院物理化学实验教学组,物理化学实验(第四版),2002

13、,北京大学出版社,35.16.3 下水的密度为0.9988957 gmL-1,20 下水的比热为4.1818 Jg-1K-1,David R. Lide. CRC Handbook of Chemistry and Physics, 2004, CRC Press, 6-3.则仪器的量热器常数W=-QV-qT-DC水=-QV-QV镍m0-QV棉m2T-DC水=264501.1047+32430.0110+167360.02412.059-30000.99889574.1818 JK-1=1.87103 JK-1W=(-QVTG)2+(-QV镍Tm0)2+(-QV棉Tm2)2+(-QV-qT2T

14、)2+(C水D)2=(264502.0590.0002)2+(32432.0590.0002)2+(167362.0590.0001)2+(264501.1047+32430.0110+167360.02412.05920.01)2+(4.181830000.99889570.1%)2=0.07 103 JK-13.4 蔗糖燃烧热的计算蔗糖的恒容燃烧热QV=-W+DC水T+qG=-W+DC水T+QV镍m0+QV棉m2G3.1中已提及,实验过程中发现,镍丝燃烧后产生黑色光亮小球,与剩余镍丝一同称量,总质量大于燃烧前镍丝的质量。据此推测黑色光亮小球可能是镍燃烧生成的氧化物,主要为NiO。数据不足,

15、难以估算实际上发生了反应的镍丝质量,但注意到剩余镍丝是缠绕在电极柱、被螺丝压住的一小段,可以用测定苯甲酸过程中剩余镍丝的质量估测测定蔗糖过程中剩余镍丝的质量,由此估计m0 = 0.0155-0.0051 g = 0.0104 g。QV=-1.87103+30000.99889574.18181.200-32430.0104-167360.01691.0313=-16.4 kJg-1QV=(TGW)2+(TC水GD)2+(QV镍Gm0)2+(QV棉Gm2)2+(W+DC水GT)2+(W+DC水T+qG2G)2=(1.2001.03130.07103)2+(1.2004.18181.0313300

16、00.99889570.1%)2+(32431.03130.0002)2+(167361.03130.0001)2+(144011.03130.007)2+(169651.031320.0002)2=0.1 kJg-1蔗糖完全燃烧的反应方程式为C12H22O11s+12O2g12CO2g+11H2Ol则n=0,恒压燃烧热Qp=QV=-16.4 kJg-1。4 讨论与结论4.1 蔗糖燃烧热实验值与文献值的比较蔗糖在100 kPa,298.15 K时的燃烧热为-16.48 kJg-1,傅献彩,沈文霞,姚天阳,侯文华,物理化学(第五版)上册,2005,高等教育出版社,482.需将其校正到实验条件下。

17、蔗糖分子的摩尔质量Mr=342.3 gmol-1,25 时CpC12H22O11,s=429.8 Jmol-1K-1,CpO2,g=29.4 Jmol-1K-1,CpCO2,g=37.1 Jmol-1K-1,CpH2O,l=75.3 Jmol-1K-1,傅献彩,沈文霞,姚天阳,侯文华,物理化学(第五版)上册,2005,高等教育出版社,483-492.则Cp=BCpB=491.7 Jmol-1K-1由Kirchhoff定律:Qp16.3 =Qp25 +1Mr298.15289.45CpdT=-16.49 kJg-1实验测得蔗糖在16.3 ,102.20 kPa下的燃烧热为-16.4 kJg-1,

18、相对文献值(校正后)的误差为-16.4-(-16.5)-16.5=-0.6%实验结果基本符合文献值。4.2 雷诺校正的原理和影响雷诺校正可以消除非燃烧引起的热量变化误差。根据牛顿冷却定律吕思骅,段家忯,张朝晖,新编基础物理实验(第二版),2013,高等教育出版社,9-10.,当系统的温度略高于环境时(温度差1015),系统向环境中的散热速率与温度差成正比:qt=K(T-)其中K是常数,T和分别为系统和环境的温度。对上式积分,可得燃烧过程中,系统与环境交换的热量q=titfK(T-)dt=tit0K(T-)dt-totfK(-T)dt如果能找到一个时刻t0,假想实际燃烧开始时刻ti到t0过程中,

19、系统与环境保持温度相等,在t0时刻瞬间完成燃烧放出热量使体系温度从Ti升高到Tf,并在t0到实际燃烧完成时刻tf内仍与系统保持温度相等,即可使q = 0,消除系统与环境之间热交换引起的误差。此即tit0K(T-)dt=totfK(-T)dt,对应图1、图2的两部分阴影面积。雷诺校正在寻找Ti和Tf的过程中,对系统温度变化的估计采用了线性拟合,而实际情况下系统温度的变化不一定是线性的,这是雷诺校正不一定绝对有效的原因。对本实验所得数据而言,雷诺校正有效的减小了误差。本实验中,如果不对数据做雷诺校正,则苯甲酸燃烧前后的T=2.091 K,蔗糖燃烧前后的T=1.218 K,由此计算得到的热量器水当量

20、W=1.65103 JK-1,蔗糖的燃烧热Qp=-17.22 kJg-1,相对文献值的误差为4.4%,远大于经雷诺校正后得到的结果。4.3 实验误差来源4.3.1 热量器与环境的热交换热量器虽然有诸多绝热措施,但仍与环境有一定的热交换,其中部分可通过雷诺校正加以消除。4.3.2 热量器内筒中的水量容量瓶因挂壁导致定容不准确,用容量瓶向内筒中加水时有水溅出。但考虑到水的总量很大,这样的小误差可以忽略。4.3.3 物质质量的称量苯甲酸和蔗糖压片在称量之后的操作中有掉渣的现象,实际发生燃烧的质量可能低于称量值。考虑到在W和Qp的计算式中,苯甲酸和蔗糖的质量都在分母上,较小的变动就会引起相当大的误差,

21、因此保证苯甲酸和蔗糖压片的完整性对实验结果的准确度非常重要。棉线和镍丝虽然质量很小,但其燃烧放热不可忽略,具体数据见表6。在蔗糖的燃烧实验中,燃烧后剩余的镍丝因有氧化物附着而难以准确测定质量,其误差可能对结果有一定的影响。表6 棉线和镍丝燃烧放热的影响 本表中的数据是估计值,只用来大致比较棉线和镍丝燃烧放热的影响。其中蔗糖燃烧中镍丝实际燃烧的质量按3.4中叙述到的处理。苯甲酸蔗糖总燃烧热/J2965817282镍丝燃烧放热/J35.6733.73比例0.1%0.2%棉线燃烧放热/J403.3282.8比例1.4%1.6%4.3.4 物质的不完全燃烧实验中观察到燃烧后,燃烧皿及氧弹内壁有黑色粉末

22、,其成分可能包含镍的氧化物及两种有机物、棉线不完全燃烧生成的炭黑。4.4 结论本实验利用氧弹式热量计,以苯甲酸为标准物,测量物质燃烧时系统温度随时间的变化曲线,经过雷诺校正和相关计算,得到16.3,102.20 kPa下,热量计的水当量为(1.870.07)103 JK-1,进而得到蔗糖的燃烧热为(-16.40.1) kJg-1,与文献值比较误差为-0.6 %。主要误差来源有热量器与环境的热交换、热量器内筒的水量及各种物质质量的测定误差。其中,热量器与环境的热交换经雷诺校正得到了很好的补偿。实验值与文献值的吻合及较好的精密度说明了用氧弹式热量器测物质燃烧热的可行性。5 致谢感谢本实验助教老师的讲解和指导,感谢同组同学的帮助和合作。参考文献只供学习与交流

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服