资源描述
初二上册期末强化数学综合检测试卷附答案
一、选择题
1.下列图形既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
2.世界最大的单口径球面射电望远镜被誉为“中国天眼”,在其新发现的脉冲星中有一颗毫秒脉冲星的自转周期为0.00519秒.数据0.00519用科学记数法可以表示为( )
A. B. C. D.
3.下列运算中,正确的是( )
A. B. C. D.
4.要使式子在实数范围内有意义,则x的取值范围是( )
A.x<2 B.x≥2 C.x≤2 D.x≠2
5.下列各式中,从左向右的变形属于因式分解的是( )
A. B.
C. D.
6.下列各式中,正确的是( )
A. B. C. D.
7.如图,在和中,已知,,再添加一个条件,如果仍不能证明成立,则添加的条件是( )
A.AC//DF B. C. D.
8.若二次根式有意义,且关于x的分式方程有正数解,则符合条件的整数m的和是( )
A.﹣7 B.﹣6 C.﹣5 D.﹣4
9.如图,将一张含有角的三角形纸片的两个顶点叠放在长方形纸条的两条对边上,若,则的度数为( )
A. B. C. D.
10.如图,在△ABC中,AB>AC,AD是△ABC的角平分线,点E在AC上,过点E作EF⊥BC于点F,延长CB至点G,使BG=2FC,连接EG交AB于点H,EP平分∠GEC,交AD的延长线于点P,连接PH,PB,PG,若∠C=∠EGC+∠BAC,则下列结论:①∠APE=∠AHE;②PE=HE;③AB=GE;④S△PAB=S△PGE.其中正确的有( )
A.①②③ B.①②③④ C.①② D.①③④
二、填空题
11.若分式的值为0,则x的值为___________.
12.若点M(3,a)关于y轴的对称点是点N(b,2),则___________.
13.已知:,则A+B=_____.
14.已知,,则______.
15.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,AB=4,点D是BC上一动点,以BD为边在BC的右侧作等边△BDE,F是DE的中点,连结AF,CF,则AF+CF的最小值是_____.
16.若 是一个完全平方式,则 的值为________________.
17.若,,则__________.
18.如图,在△ABC中,∠ACB=90°,AC=8,BC=10,点P从点A出发沿线段AC以每秒1个单位长度的速度向终点C运动,点Q从点B出发沿折线BC﹣CA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发.分别过P、Q两点作PE⊥l于E,QF⊥l于F,当△PEC与△QFC全等时,CQ的长为______.
三、解答题
19.因式分解:(1) (2)
20.先化简再求值:,其中,.
21.如图,△ABE≌△DCE,点A,C,B在一条直线上,∠AED和∠BEC相等吗?为什么?
22.问题引入:
(1)如图1,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC= (用表示);如图2,∠COB=∠ABC,∠BCO=∠ACB,∠A=α,则∠BOC= (用表示);
拓展研究:
(2)如图3,∠CBO=∠DBC,∠BCO=∠ECB,∠A=,求∠BOC的度数(用表示),并说明理由;
(3)BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=,∠BCO=∠ECB,∠A=,请猜想∠BOC= (直接写出答案).
23.随着高考、中考的到来,某服装店老板预测有关“势在必得”“逢考必过”之类的短袖T恤衫能畅销,委托某服装车间加工280件此类服装,现分配给甲、乙两人加工,已知乙加工的件数比甲的2倍少80件.
(1)甲、乙加工服装件数分别是______件和______件;
(2)若乙每天比甲多加工5件,且两人所用时间相同,求乙每天加工服装件数.
24.若一个正整数能表示成(是正整数,且)的形式,则称这个数为“明礼崇德数”,与是的一个平方差分解. 例如:因为,所以5是“明礼崇德数”,3与2是5的平方差分解;再如:(是正整数),所以也是“明礼崇德数”,与是的一个平方差分解.
(1)判断:9_______“明礼崇德数”(填“是”或“不是”);
(2)已知(是正整数,是常数,且),要使是“明礼崇德数”,试求出符合条件的一个值,并说明理由;
(3)对于一个三位数,如果满足十位数字是7,且个位数字比百位数字大7,称这个三位数为“七喜数”.若既是“七喜数”,又是“明礼崇德数”,请求出的所有平方差分解.
25.在中,,点在边上,且是射线上一动点(不与点重合,且),在射线上截取,连接.
当点在线段上时,
①若点与点重合时,请说明线段;
②如图2,若点不与点重合,请说明;
当点在线段的延长线上时,用等式表示线段之间的数量关系(直接写出结果,不需要证明).
26.如图,△ABC是等边三角形,点D、E分别是射线AB、射线CB上的动点,点D从点A出发沿射线AB移动,点E从点B出发沿BG移动,点D、点E同时出发并且运动速度相同.连接CD、DE.
(1)如图①,当点D移动到线段AB的中点时,求证:DE=DC.
(2)如图②,当点D在线段AB上移动但不是中点时,试探索DE与DC之间的数量关系,并说明理由.
(3)如图③,当点D移动到线段AB的延长线上,并且ED⊥DC时,求∠DEC度数.
【参考答案】
一、选择题
2.B
解析:B
【分析】根据轴对称图形和中心对称图形的定义,逐项判断即可求解.
【详解】A、是轴对称图形,但不是中心对称图形,故本选项不符合题意;
B、既是轴对称图形又是中心对称图形,故本选项符合题意;
C、是中心对称图形,但不是轴对称图形,故本选项不符合题意;
D、既不是中心对称图形,也不是轴对称图形,故本选项不符合题意;
故选:B.
【点睛】本题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键.
3.B
解析:B
【分析】根据绝对值小于1的数可以用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,即可求解.
【详解】解:0.00519=.
故选:B.
【点睛】本题考查用科学记数法表示较小的数,熟练掌握一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定是解题的关键.
4.C
解析:C
【分析】根据合并同类项的法则,同底数幂相乘,同底数幂的除法法则,积的乘方法则分别进行计算即可.
【详解】A.,故A错误;
B.,故B错误;
C.,故C正确;
D.,故D错误.
故选:C.
【点睛】此题主要考查了合并同类项、同底数幂的乘法、同底数幂的除法、积的乘方,解题的关键是掌握各计算法则.
5.A
解析:A
【分析】根据二次根式和分式有意义的条件,即可求解.
【详解】解:由题意得2﹣x≥0且2﹣x≠0,
解得x<2,
故选:A.
【点睛】本题考查的是分式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0解题的关键.
6.B
解析:B
【分析】判断一个式子是否是因式分解的条件是①等式的左边是一个多项式,②等式的右边是几个整式的积,③等号左、右两边相等,根据以上条件进行判断即可.
【详解】解:A、,不是因式分解,则此项不符合题意;
B、,是因式分解,则此项符合题意;
C、,不是因式分解,则此项不符合题意;
D、,则此项不是因式分解,不符合题意;
故选:B.
【点睛】本题考查了因式分解,熟练掌握因式分解的概念是解题关键.
7.D
解析:D
【分析】根据分式的性质,即可一一判定.
【详解】解:A.,故该选项错误;
B.当时,,当,此式无意义,故该选项错误;
C. ,故该选项错误;
D. ,故该选项正确;
故选:D.
【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数或(整式),分式的值不变,熟练掌握和运用分式的性质是解决本题的关键.
8.C
解析:C
【分析】根据一般三角形全等的判定方法:SAS,ASA,AAS,SSS,如果是两个直角三角形,除了前边的四种,还可以利用HL,判断即可.
【详解】解:A.由,可得:,然后利用来判定全等即可,故选项不符合题意;
B.,然后利用来判定全等即可,故选项不符合题意;
C.,不符合全等三角形的判定方法,故选项符合题意;
D.,然后利用来判定全等即可,故选项不符合题意.
故选:C.
【点睛】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.
9.D
解析:D
【分析】根据二次根式有意义,可得,解出关于的分式方程 的解为,解为正数解,进而确定m的取值范围,注意增根时m的值除外,再根据m为整数,确定m的所有可能的整数值,求和即可.
【详解】解:去分母得,,
解得,,
∵关于x的分式方程有正数解,
∴ ,
∴,
又∵是增根,当时,
,即,
∴,
∵有意义,
∴,
∴,
因此 且,
∵m为整数,
∴m可以为-4,-2,-1,0,1,2,其和为-4,
故选:D.
【点睛】考查二次根式的意义、分式方程的解法,以及分式方程产生增根的条件等知识,解题的关键是理解正数解,整数m的意义.
10.D
解析:D
【分析】依据平行线的性质,即可得到∠3=∠2=50°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出∠1=50°−30°=20°.
【详解】解:如图,∵长方形纸条的对边平行,∠2=50°,
∴∠2=∠3=50°,
根据三角形外角性质,可得∠3=∠1+30°,
∴∠1=50°−30°=20°,
故选:D.
【点睛】本题主要考查了平行线的性质以及三角形外角性质的运用,解题的关键是掌握平行线的性质:两直线平行,同位角相等.
11.D
解析:D
【分析】过点P分别作GE,AB,AC的垂线,垂足分别为I,M,N,根据角平分线的性质定理可知,PM=PN=PI,易证PH平分∠BGE,即∠P HM=∠PHI.设∠PEH=a,∠PAB=,由外角的性质可得∠APE=a-,∠AHE=2a-2,所以∠APE=∠AHE;故①正确;由外角的性质可得∠PHE=90°-a+,由三角形内角和可得,∠HPE=180°-a-(90°-a+)=90°-,所以∠PHE∠HPE,即PEHE;故②不正确;在射线AC上截取CK=EC,延长BC到点L,使得CL=FC,连接BK,LK,易证△EFC≌△KLC,所以EF=LK,∠L=∠EFC=90°,易证FG=BL,所以△GEF≌△BKL(SAS),所以∠EGF=∠KBC,GE=BK,由由外角的性质可知,∠BAC=∠BKC,所以AB=BK=GE,故③正确;因为S△PAB=·AB·PM,S△PGE=GE·PI,且AB=CE,PM=PI,所以S△PAB=S△PGE,故④正确.
【详解】解:过点P分别作GE,AB,AC的垂线,垂足分别为I,M,N,
∵AP平分∠BAC,PM⊥AB,PN⊥AC,
∴PM=PN,∠PAB=∠PAC,
∵PE平分∠GEC,PN⊥AC,PI⊥EH,
∴PI=PN,∠PEH=∠PEN,
∴PM=PN=PI,
∴∠PMH=∠PIH,
∵PH=PH,
∴∠PHM=∠PHI,
∴Rt△PMH≌Rt△PIH(HL),
∴∠PHM=∠PHI,
设∠PEH=α,∠PAB=β,
∴∠PEN=α,∠BAN=β,
对于△APE,∠PEC=∠PAE+∠APE,
∴∠APE=α﹣β,
对于△AEH,∠HEC=∠BAC+∠AHE,
∴∠AHE=2α﹣2β,
∴∠APE=∠AHE;故①正确;
∵∠AHE+∠MHE,∠PHM=∠PHI,
∴∠PHE=90°﹣α+β,
∴∠HPE=180°﹣α﹣(90°﹣α+β)=90°﹣β,
∴∠PHE≠∠HPE,即PE≠HE;故②不正确;
在射线AC上截取CK=EC,延长BC到点L,使得CL=FC,连接BK,LK,
∵∠ECF=∠LCK,
∴△EFC≌△KLC(ASS),
∴EF=LK,∠L=∠EFC=90°,
∵BG=2FC,FC=CL,
∴BG=FL,
∴FG=BL,
∴△GEF≌△BKL(SAS),
∴∠EGF=∠KBC,GE=BK,
∵∠ACB=∠EGC+∠BAC,∠ACB=∠KBC+∠BKC,
∴∠BAC=∠BKC,
∴AB=BK,
∴GE=AB,故③正确;
∵S△PAB=•AB•PM,S△PGE=GE•PI,
又∵AB=GE,PM=PI,
∴S△PAB=S△PGE.故④正确.
故选:D.
【点睛】本题主要考查全等三角形的性质与判定,角平分线的性质与判定,三角形外角的性质定理,作出辅助线,构造全等是解题关键.
二、填空题
12.1
【分析】根据分式的值为零的条件是:分子为零而分母不为零,然后进行计算即可.
【详解】解:∵分式的值为零,
∴且,
∴,
故答案为:.
【点睛】本题考查了分式的值为零的条件,属于基础知识的考查,比较简单.
13.-1
【分析】根据轴对称的性质,点M和点N的纵坐标相等,横坐标互为相反数,可以求得a、b的值,从而可得a+b的值.
【详解】解:∵点M(3,a)关于y轴的对称点是点N(b,2),
∴b=-3,a=2,
∴a+b=-1,
∴(a+b)2021=(-1)20121=-1.
故答案为:-1.
【点睛】本题考查了轴对称的性质和有理数乘方的运算,解题的关键是先求得a、b的值.
14.A
解析:3
【分析】根据分式的加减运算将右边的分式合并之后,运用待定系数法建立关于A,B的方程组求解即可.
【详解】解:,
,解得:.
故答案为:3.
【点睛】本题考查分式的加减运算,解题的关键是熟练运用分式的加减运算法则,本题属于基础题型.
15.2
【分析】根据同底数幂除法的逆运算求解即可.
【详解】解:∵,,
∴,
故答案为:2.
【点睛】本题主要考查了同底数幂除法的逆运算,熟知相关计算法则是解题的关键.
16.【分析】以BC为边作等边三角形BCG,连接FG,AG,作GH⊥AC交AC的延长线于H,根据等边三角形的性质得到DC=EG,根据全等三角形的性质得到FC=FG,于是得到在点D的运动过程中,AF+F
解析:
【分析】以BC为边作等边三角形BCG,连接FG,AG,作GH⊥AC交AC的延长线于H,根据等边三角形的性质得到DC=EG,根据全等三角形的性质得到FC=FG,于是得到在点D的运动过程中,AF+FC=AF+FG,而AF+FG≥AG,当F点移动到AG上时,即A,F,G三点共线时,AF+FC的最小值=AG,根据勾股定理即可得到结论.
【详解】以BC为边作等边三角形BCG,连接FG,AG,
作GH⊥AC交AC的延长线于H,
∵△BDE和△BCG是等边三角形,
∴DC=EG,
∴∠FDC=∠FEG=120°,
∵DF=EF,
∴△DFC≌△EFG(SAS),
∴FC=FG,
∴在点D的运动过程中,AF+FC=AF+FG,而AF+FG≥AG,
∴当F点移动到AG上时,即A,F,G三点共线时,AF+FC的最小值=AG,
∵BC=CG=AB=2,AC=2,
在Rt△CGH中,∠GCH=30°,CG=2,
∴GH=1,CH=,
∴AG= ==2,
∴AF+CF的最小值是2.
【点睛】此题考查轴对称-最短路线问题,等边三角形的性质,直角三角形的性质,正确的作出辅助线是解题的关键.
17.或
【分析】根据完全平方公式的特点即可确定k的值.
【详解】∵
∴或
故答案为: 或
【点睛】本题考查了完全平方式,两数的平方和加上或减去这两个数的积的2倍,即为完全平方式,掌握此特
解析: 或
【分析】根据完全平方公式的特点即可确定k的值.
【详解】∵
∴或
故答案为: 或
【点睛】本题考查了完全平方式,两数的平方和加上或减去这两个数的积的2倍,即为完全平方式,掌握此特点是解题的关键,但要注意不要忽略负的情况.
18.##
【分析】根据完全平方公式变形,代入求解即可.
【详解】解:∵,
∴,
故答案为:.
【点睛】本题考查了根据完全平方公式变形求值,掌握完全平方公式是解题的关键.
解析:##
【分析】根据完全平方公式变形,代入求解即可.
【详解】解:∵,
∴,
故答案为:.
【点睛】本题考查了根据完全平方公式变形求值,掌握完全平方公式是解题的关键.
19.7或3.5
【分析】分两种情况:(1)当P在AC上,Q在BC上时;(2)当P在AC上,Q在AC上时,即P、Q重合时;
【详解】解:当P在AC上,Q在BC上时,
∵∠ACB=90°,
∴∠PC
解析:7或3.5
【分析】分两种情况:(1)当P在AC上,Q在BC上时;(2)当P在AC上,Q在AC上时,即P、Q重合时;
【详解】解:当P在AC上,Q在BC上时,
∵∠ACB=90°,
∴∠PCE+∠QCF=90°,
∵PE⊥l于E,QF⊥l于F.
∴∠PEC=∠CFQ=90°,
∴∠EPC+∠PCE=90°,
∴∠EPC=∠QCF,
∵△PEC与△QFC全等,
∴此时是△PCE≌△CQF,
∴PC=CQ,
∴8-t=10-3t,
解得t=1,
∴CQ=10-3t=7;
当P在AC上,Q在AC上时,即P、Q重合时,则CQ=PC,
由题意得,8-t=3t-10,
解得t=4.5,
∴CQ=3t-10=3.5,
综上,当△PEC与△QFC全等时,满足条件的CQ的长为7或3.5,
故答案为:7或3.5.
【点睛】本题主要考查了全等三角形的性质,根据题意得出关于的方程是解题的关键.
三、解答题
20.(1);(2).
【分析】(1)首先提公因式2,再利用平方差公式进行分解即可;
(2)首先提公因式x,再利用完全平方公式进行分解即可.
【详解】(1)原式
.
(2)原式
.
【点睛】
解析:(1);(2).
【分析】(1)首先提公因式2,再利用平方差公式进行分解即可;
(2)首先提公因式x,再利用完全平方公式进行分解即可.
【详解】(1)原式
.
(2)原式
.
【点睛】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
2【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a,b的值代入计算可得.
【详解】解:原式
;
当a=2,b=-1时,
原式.
【点睛】本题主要考查分式的化简求值,解题的关
解析:
【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a,b的值代入计算可得.
【详解】解:原式
;
当a=2,b=-1时,
原式.
【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
22.相等.见解析
【分析】根据全等三角形的对应角相等进一步减去同一个角后即可证得结论.
【详解】解:相等;
理由:
∵△ABE≌△DCE,
∴∠AEB=∠DEC,
∴∠DEC-∠AEC=∠A
解析:相等.见解析
【分析】根据全等三角形的对应角相等进一步减去同一个角后即可证得结论.
【详解】解:相等;
理由:
∵△ABE≌△DCE,
∴∠AEB=∠DEC,
∴∠DEC-∠AEC=∠AEB-∠AEC,
即:∠AED=∠BEC.
【点睛】本题考查了全等三角形的性质,解题的关键是了解全等三角形的对应角相等,难度不大.
23.(1),
(2),理由见解析
(3)
【分析】(1)如图1,根据角平分线的定义可得∠OBC=∠ABC,∠OCB=∠ACB,然后表示出∠OBC+∠OCB,再根据三角形的内角和等于180°列式整理
解析:(1),
(2),理由见解析
(3)
【分析】(1)如图1,根据角平分线的定义可得∠OBC=∠ABC,∠OCB=∠ACB,然后表示出∠OBC+∠OCB,再根据三角形的内角和等于180°列式整理即可得∠BOC=90°+α;如图2,根据三角形的内角和等于180°列式整理即可得∠BOC=120°+α;
(2)如图3,根据三角形的内角和等于180°列式整理即可得∠BOC=120°﹣α;
(3)根据三角形的内角和等于180°列式整理即可得∠BOC=.
(1)
如图1,∵∠ABC与∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB),在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)
=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A=90°+α;
如图2,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)
=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=120°+∠A=120°+α;
(2)
如图3,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)
=180°﹣(∠DBC+∠ECB)=180°﹣(∠A+∠ACB+∠A+ABC)=180°﹣(∠A+180°)=120°﹣α;
(3)
在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)
=180°﹣(∠DBC+∠ECB)=180°﹣(∠A+∠ACB+∠A+∠ABC)
=180°﹣(∠A+180°)
=.
【点睛】此题考查了三角形内角和定理,角平分线的性质,解题关键在于掌握内角和定理,以及几何图形中角度的计算.
24.(1)120,160
(2)20
【分析】(1)设甲加工服装x件,乙加工服装y件,根据加工280件此类服装和乙加工的件数比甲的2倍少80件列出方程组,即可得解;
(2)设乙每天加工服装m件,则
解析:(1)120,160
(2)20
【分析】(1)设甲加工服装x件,乙加工服装y件,根据加工280件此类服装和乙加工的件数比甲的2倍少80件列出方程组,即可得解;
(2)设乙每天加工服装m件,则甲每天加工服装(m-5)件,根据两人所用时间相同列出分式方程,解之即可得解.
(1)
解:设甲加工服装x件,乙加工服装y件,
根据题意得:,
解得:,
∴甲加工服装120件,乙加工服装160件;
故答案为:120,160;
(2)
解:设乙每天加工服装m件,则甲每天加工服装(m-5)件,
根据题意得:,
解得:,
经检验,是原方程的解,且符合题意;
∴乙每天加工服装20件.
【点睛】本题考查二元一次方程组和分式方程解决实际问题,解题的关键是找准题干中的等量关系,正确地列出方程(组).
25.(1)是;(2)k=-5;(3)m=279,,.
【分析】(1)根据9=52-42,确定9是“明礼崇德数”;
(2)根据题意分析N应是两个完全平方式的差,得到k=-5,将k=-5代入计算即可将N
解析:(1)是;(2)k=-5;(3)m=279,,.
【分析】(1)根据9=52-42,确定9是“明礼崇德数”;
(2)根据题意分析N应是两个完全平方式的差,得到k=-5,将k=-5代入计算即可将N平方差分解,得到答案;
(3)确定“七喜数”m的值,分别将其平方差分解即可.
【详解】(1)∵9=52-42,
∴9是“明礼崇德数”,
故答案为:是;
(2)当k=-5时,是“明礼崇德数”,
∵当k=-5时,
,
=,
=,
=,
=
=.
∵是正整数,且,
∴N是正整数,符合题意,
∴当k=-5时,是“明礼崇德数”;
(3)由题意得:“七喜数”m=178或279,
设m==(a+b)(a-b),
当m=178时,
∵178=289,
∴,得(不合题意,舍去);
当m=279时,
∵279=393=931,
∴①,得,∴,
②,得,∴,
∴既是“七喜数”又是“明礼崇德数”的m是279,,.
【点睛】此题考查因式分解,熟练掌握平方差公式和完全平方公式是解此题的前提,(3)是此题的难点,解题时需根据百位与个位数字的关系确定具体的数据,再根据“明礼崇德数”的要求进行平方差分解.
26.(1)①证明见解析;②证明见解析;(2)BF=AE-CD
【分析】(1)①根据等边对等角,求到,再由含有60°角的等腰三角形是等边三角形得到是等边三角形,之后根据等边三角形的性质以及邻补角的性质得
解析:(1)①证明见解析;②证明见解析;(2)BF=AE-CD
【分析】(1)①根据等边对等角,求到,再由含有60°角的等腰三角形是等边三角形得到是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到,推出,根据全等三角形的性质即可得出结论;②过点A做AG∥EF交BC于点G,由△DEF为等边三角形得到DA=DG,再推出AE=GF,根据线段的和差即可整理出结论;
(2)根据题意画出图形,作出AG,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论.
【详解】(1)①证明:
,且E与A重合,
是等边三角形
在和中
②如图2,过点A做AG∥EF交BC于点G,
∵∠ADB=60° DE=DF
∴△DEF为等边三角形
∵AG∥EF
∴∠DAG=∠DEF=60°,∠AGD=∠EFD=60°
∴∠DAG=∠AGD
∴DA=DG
∴DA-DE=DG-DF,即AE=GF
由①易证△AGB≌△ADC
∴BG=CD
∴BF=BG+GF=CD+AE
(2)如图3,和(1)中②相同,过点A做AG∥EF交BC于点G,
由(1)可知,AE=GF,DC=BG,
故.
【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.
27.(1)见详解;
(2)DE=DC,理由见详解;
(3)∠DEC=45°
【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证
(2)猜测,寻找条件证明即可.最常用
解析:(1)见详解;
(2)DE=DC,理由见详解;
(3)∠DEC=45°
【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证
(2)猜测,寻找条件证明即可.最常用的是证明两个三角形全等,但图中给出的三角形中并未出现全等三角形,所以添加辅助线:在射线AB上截取,这样只要证明即可.利用等边三角形的性质及可知为等边三角形,这样通过两个等边三角形即可证明.
(3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,用同样的方法证明,又因为ED⊥DC,所以为等腰之间三角形,则∠DEC度数可求.
【详解】由题意可知
∵D为AB的中点
∵为等边三角形,
(2)
理由如下:
在射线AB上截取,连接EF
∵为等边三角形
∴为等边三角形
由题意知
即
在和中,
(3)如图,在射线CB上截取,连接DF
∵为等边三角形
∴为等边三角形
由题意知
即
在和中,
∵ED⊥DC
∴为等腰直角三角形
【点睛】本题主要考查了等腰三角形,等边三角形,全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键.
展开阅读全文