收藏 分销(赏)

八年级上学期压轴题强化数学质量检测试卷解析(一)[002].doc

上传人:精**** 文档编号:1749771 上传时间:2024-05-08 格式:DOC 页数:21 大小:937.04KB
下载 相关 举报
八年级上学期压轴题强化数学质量检测试卷解析(一)[002].doc_第1页
第1页 / 共21页
八年级上学期压轴题强化数学质量检测试卷解析(一)[002].doc_第2页
第2页 / 共21页
八年级上学期压轴题强化数学质量检测试卷解析(一)[002].doc_第3页
第3页 / 共21页
八年级上学期压轴题强化数学质量检测试卷解析(一)[002].doc_第4页
第4页 / 共21页
八年级上学期压轴题强化数学质量检测试卷解析(一)[002].doc_第5页
第5页 / 共21页
点击查看更多>>
资源描述

1、八年级上学期压轴题强化数学质量检测试卷解析(一)1如图1,在平面直角坐标系中,点A、B分别在x、y轴上,以AB为边作等腰直角三角形ABC,使,点C在第一象限(1)若点A(a,0),B(0,b),且a、b满足,则_,_,点C的坐标为_;(2)如图2,过点C作轴于点D,BE平分,交x轴于点E,交CD于点F,交AC于点G,求证:CG垂直平分EF;(3)试探究(2)中OD,OE与DF之间的关系,并说明理由2在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足(1)求点A和点B的坐标;(2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的

2、坐标;:(3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标3如图,ABC 中,AB=AC=BC,BDC=120且BD=DC,现以D为顶点作一个60角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明(1)如图1,若MDN的两边分别交AB,AC边于M,N两点猜想:BM+NC=MN延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证请你按照该思路写出完整的证明过程;(2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探

3、究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明)4如图1,在平面直角坐标系中, ,动点从原点出发沿轴正方向以的速度运动,动点也同时从原点出发在轴上以的速度运动,且满足关系式,连接,设运动的时间为秒.(1)求的值;(2)当为何值时,(3)如图2,在第一象限存在点,使,求.5(1)如图1,已知:在ABC中,BAC=90,AB=AC,直线m经过点A,BD直线m,CE直线m,垂足分别为点D、E 证明:DE=BD+CE(提示:由于DE=AD+AE,证明AD=CE,AE=BD即可)(2)如图2,将(1)中的条件改为:在ABC中,AB=AC,D、A、E三点都在直线m上,并且有BDA=AEC=

4、BAC=,其中为任意钝角,请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由(3)如图3,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为BAC平分线上的一点,且ABF和ACF均为等边三角形,连接BD、CE,若BDA=AEC=BAC,试证明DEF是等边三角形6已知在四边形ABCD中,ABC+ADC=180,AB=BC(1)如图1,若BAD=90,AD=2,求CD的长度;(2)如图2,点P、Q分别在线段AD、DC上,满足PQ=AP+CQ,求证:PBQ=90ADC;(3)如图3,若点Q运动到DC的延长线上,点P也运动到DA的延长线上时,仍然满足

5、PQ=AP+CQ,则(2)中的结论是否成立?若成立,请给出证明过程,若不成立,请写出PBQ与ADC的数量关系,并给出证明过程.7在平面直角坐标系中,点A在x轴的负半轴上,点B在y轴的正半轴上,点A与点C关于y轴对称(1)如图1,OA=OB,AF平分BAC交BC于F,BEAF交AC于E,请直接写出EF与EC的数量关系为 ;(2)如图2,AF平分BAC交BC于F,若AF=2OB,求ABC的度数;(3)如图3,OA=OB,点G在BO的垂直平分线上,作GOH=45交BA的延长线于H,连接GH,试探究OG与GH的数量和位置关系8问题引入:(1)如图1,在中,点O是和平分线的交点,若,则_(用表示):如图

6、2,则_(用表示);拓展研究:(2)如图3,猜想度数(用表示),并说明理由;(3)BO、CO分别是的外角、的n等分线,它们交于点O,请猜想_(直接写出答案)【参考答案】2(1),;C(8,4);(2)证明见解析;(3),理由见解析【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D,证明,进一步可求出点C坐标;(2)利用已知证明,再证解析:(1),;C(8,4);(2)证明见解析;(3),理由见解析【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D,证明,进一步可求出点C坐标;(2)利用已知证明,再证明,得到,利用平行性质得到,进一步得,再利用HL定理证明,可得,即可证明CG

7、垂直平分EF;(3)证明得到,又由(2)可知,进一步可得(1)解:,即:,作轴交于点D,在和中,即(2)证明:,BE平分,在和中,在和中,即CG垂直平分EF(3)解:,理由如下:,在和中,又由(2)可知,即【点睛】本题考查等腰直角三角形的性质,全等三角形的判定和性质,绝对值非负性,垂直平分线的判定,平行线的性质,坐标与图形本题综合性较强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键3(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;(2)解析:(1),;(

8、2)D(-1,0),F(-2,4);(3)N(-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;(2)如图,过点F作FHAO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案;(3)过点N分别作NQON交OM的延长线于点Q,NGPN交EM的延长线于点G,再分别过点Q和点N作QREG于点R,NSEG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=

9、EM=4,MS=OE=2,即可完成求解【详解】(1),(2)如图,过点F作FHAO于点HAFAEFHA=AOE=90, AFH=EAO又AF=AE,在和中 AH=EO=2,FH=AO=4OH=AO-AH=2F(-2,4) OA=BO, FH=BO在和中 HD=OD HD=OD=1D(-1,0)D(-1,0),F(-2,4);(3)如图,过点N分别作NQON交OM的延长线于点Q,NGPN交EM的延长线于点G,再分别过点Q和点N作QREG于点R,NSEG于点S, 等腰NQ=NO,NGPN, NSEG , , 点E为线段OB的中点 等腰NG=NP, QNG=ONP在和中 NGQ=NPO,GQ=PO,

10、PO=PBPOE=PBE=45NPO=90NGQ=90QGR=45. 在和中 QR=OE在和中 QM=OM.NQ=NO,NMOQ等腰 在和中 NS=EM=4,MS=OE=2N(-6,2)【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解4(1)过程见解析;(2)MN= NCBM【分析】(1)延长AC至E,使得CE=BM并连接DE,根据BDC为等腰三角形,ABC为等边三角形,可以证得MBDECD,可得MD=DE,B解析:(1)过程见解析;(2)MN= NCBM【分析】(1)延长AC至E,

11、使得CE=BM并连接DE,根据BDC为等腰三角形,ABC为等边三角形,可以证得MBDECD,可得MD=DE,BDM=CDE,再根据MDN =60,BDC=120,可证MDN =NDE=60,得出DMNDEN,进而得到MN=BM+NC(2)在CA上截取CE=BM,利用(1)中的证明方法,先证BMDCED(SAS),再证MDNEDN(SAS),即可得出结论【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DEBDC为等腰三角形,ABC为等边三角形,BD=CD,DBC=DCB,MBC=ACB=60,又BD=DC,且BDC=120,DBC=DCB=30ABC+DBC=ACB+DCB=60+

12、30=90,MBD=ECD=90,在MBD与ECD中, ,MBDECD(SAS),MD=DE,BDM=CDEMDN =60,BDC=120,CDE+NDC =BDM+NDC=120-60=60,即:MDN =NDE=60,在DMN与DEN中, ,DMNDEN(SAS),MN=NE=CE+NC=BM+NC(2)如图中,结论:MN=NCBM理由:在CA上截取CE=BMABC是正三角形,ACB=ABC=60,又BD=CD,BDC=120,BCD=CBD=30,MBD=DCE=90,在BMD和CED中 ,BMDCED(SAS),DM= DE,BDM=CDEMDN =60,BDC=120,NDE=BDC

13、-(BDN+CDE)=BDC-(BDN+BDM)=BDC-MDN=120-60=60,即:MDN =NDE=60,在MDN和EDN中 ,MDNEDN(SAS),MN =NE=NCCE=NCBM【点睛】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题5(1);(2);(3)【分析】(1)把满足的关系式转化为非负数和的形式即可解答;(2)画出图形,动点运动方向有两种情况,分情况根据列方程解答即可;【详解】解:(1)(解析:(1);(2);(3)【分析】(1)把满足的关系式转化为非负数和的形式即可解答;(2)画出图形,

14、动点运动方向有两种情况,分情况根据列方程解答即可;【详解】解:(1)(2)当动点沿轴正方向运动时,如解图-2-1:当动点沿轴负方向运动时,如解图-2-2:(3)过作,连在与 ,在与中 ,是等边三角形,又【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,添加恰当辅助线构造三角形是本题的关键6(1)见解析;(2)成立,见解析;(3)见解析【分析】(1)运用AAS证明ADBCEA即可;(2)运用AAS证明ADBCEA即可;(3)运用SAS证明DBFEAF,后运解析:(1)见解析;(2)成立,见解析;(3)见解析【分析】(1)运用AAS证明ADBC

15、EA即可;(2)运用AAS证明ADBCEA即可;(3)运用SAS证明DBFEAF,后运用有一个角是60的等腰三角形是等边三角形证明即可【详解】(1)如图1,BD直线m,CE直线m,BDA=CEA=90,BAC=90,BAD+CAE=90BAD+ABD=90,CAE=ABD,在ADB和CEA中,ADBCEA(AAS),AE=BD,AD=CE,DE=AE+AD=BD+CE;(2)如图2,BDA=BAC=,DBA+BAD=BAD+CAE=,DBA=CAE,在ADB和CEA中,ADBCEA(AAS),AE=BD,AD=CE,DE=AE+AD=BD+CE;(3)如图3,由(2)可知,ADBCEA,BD=

16、AE,DBA=CAE,ABF和ACF均为等边三角形,ABF=CAF=60,BF=AF,DBA+ABF=CAE+CAF,DBF=FAE,在DBF和EAF中, ,DBFEAF(SAS),DF=EF,BFD=AFE,DFE=DFA+AFE=DFA+BFD=60,DEF为等边三角形【点睛】本题考查了三角形全等的判定和性质,等边三角形的判定,熟练掌握三角形全等的判定是解题的关键7(1)CD=2;(2)证明见解析;(3)(2)中结论不成立,应该是:,理由见解析.【分析】(1)如图1,利用HL证得两个直角三角形全等:RtBADRtBCD,则其对应边相等:AD=DC=2解析:(1)CD=2;(2)证明见解析;

17、(3)(2)中结论不成立,应该是:,理由见解析.【分析】(1)如图1,利用HL证得两个直角三角形全等:RtBADRtBCD,则其对应边相等:AD=DC=2;(2)如图2,延长DC,在上面找一点K,使得CK=AP,连接BK,通过证BPABCK(SAS)得到:1=2,BP=BK然后由全等三角形PBQBKQ的对应角相等求得PBQ=ABC,结合已知条件“ABC+ADC=180”可以推知PBQ=90-ADC;(3)(2)中结论不成立,应该是:PBQ=90+ADC如图3,在CD延长线上找一点K,使得KC=AP,连接BK,构建全等三角形:BPABCK(SAS),由该全等三角形的性质和全等三角形的判定定理SS

18、S证得:PBQBKQ,则其对应角相等:PBQ=KBQ,结合四边形的内角和是360度可以推得:PBQ=90+ADC【详解】(1),在RtBAD和RtBCD中,RtBADRtBCD(HL)AD=DC=2DC=2(2)如图,延长DC,在上面找一点K,使得CK=AP,连接BK在BPA和BCK中BPABCK(SAS),BP=BKPQ=AP+CQPQ=QK在PBQ和BKQ中PBQBKQ(SSS) (3)(2)中结论不成立,应该是:在CD延长线上找一点K,使得KC=AP,连接BK在BPA和BCK中BPABCK(SAS),BP=BKPQ=AP+CQPQ=QK在PBQ和BKQ中PBQBKQ(SSS)【点睛】本题

19、考查了全等三角形的判定与性质在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.8(1)EFEC(2)72(3)GHGO,GHGO【分析】(1)如图1中,设AF交BE于点J首先证明AB=AE,再证明AEF=ABF=90,可得结论;(2)如图2中,取解析:(1)EFEC(2)72(3)GHGO,GHGO【分析】(1)如图1中,设AF交BE于点J首先证明AB=AE,再证明AEF=ABF=90,可得结论;(2)如图2中,取CF的中点T,连接OT由OA=OC,BOAC,推出BA=BC,推出BAC=BCA,ABO=CBO,设BAC=BCA=2,利用三角形内角和定理,

20、构建方程求解即可;(3)结论:OG=GH,OGGH如图3中,连接GB,在BA上取一点H,使得GB=GH,连接OH,设AB交DG于点W,交OG于点K,连接OW证明GOH=GOH=45,推出点H与点H重合,可得结论(1)解:(1)结论:EF=EC理由:如图1中,设AF交BE于点JAF平分BAC,BAF=CAF,BEAF,BAF+ABE=90,CAF+AEB=90,ABE=AEB,AB=AE,A,C关于y轴对称,OA=OC,OA=OB,OA=OB=OC,OAB=OBA=45,OCB=OBC=45,ABC=90,在ABF和AEF中,ABFAEF(SAS),AEF=ABF=90,CEF=90,ECF=E

21、FC=45,EF=EC;(2)解:如图2中,取CF的中点T,连接OTAO=OC,FT=TC,OTAF,OT=AF,AF=2OB,OB=OT,OBT=OTB,OA=OC,BOAC,BA=BC,BAC=BCA,ABO=CBO,设BAC=BCA=2,AF平分BAC,BAF=CAF=,OTAF,TOC=CAF=,OBT=OTB=TOC+TCO=3,OBC+OCB=90,5=90,=18,OBC=36,ABC=2OBC=72;(3)解:结论:OG=GH,OGGH理由:如图3中,连接GB,在BA上取一点H,使得GB=GH,连接OH,设AB交DG于点W,交OG于点K,连接OW设OGB=m,OGH=n,GD垂

22、直平分线段OB,GB=GO,DGB=DGO=m,GB=GO=GH,GHO=(180-n)=90-n,GHB=(180-m-n)=90-m-n,KHO=GHO-GHB=90-n-(90-m-n)=m,KHO=KGW,GKW=HKO,HOK=GWK,DGOA,GWK=OAB=45,COH=45,COH=45,COH=COH,点H与点H重合,OG=GH,GHO=GOH=45,OGH=90,GH=GO,GHGO【点睛】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,等腰三角形的性质等知识,第三个问题比较难,采用了同一法解决问题9(1),(2),理由见解析(3)【分析】(1)由角平分线的定义得,则,再利用三角形内角和定理可得答案;(2)根据三角形内角和定理得,而,代入化简即可;(3)由(2)同理可得答案解析:(1),(2),理由见解析(3)【分析】(1)由角平分线的定义得,则,再利用三角形内角和定理可得答案;(2)根据三角形内角和定理得,而,代入化简即可;(3)由(2)同理可得答案(1)解:点是和平分线的交点,在中,故答案为:;在中,故答案为:;(2)解:,理由如下:,;(3)解:在中,故答案为:【点睛】本题主要考查了三角形内角和定理,角平分线的定义,解题的关键是采取类比的方法,同时渗透了整体思想

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服