资源描述
2024年人教版中学七7年级下册数学期末质量检测含答案
一、选择题
1.如图所示,下列说法正确的是( )
A.和是内错角 B.和是同旁内角
C.和是同位角 D.和是内错角
2.为进一步扩大和提升浑源县旅游知名度和美誉度,彰显浑源的自然魅力和文化内涵,浑源县面向全社会公开征集浑源县旅游城市形象宣传语、宣传标识及主题歌曲,如图所示是其中一幅参赛标识,将此宣传标识进行平移,能得到的图形是( )
A. B. C. D.
3.平面直角坐标系中有一点,则点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列命题:(1)无理数是无限小数;(2)过一点有且只有一条直线与已知直线平行;(3)过一点有且只有一条直线与已知直线垂直;(4)平方根等于它本身的数是0和1,其中是假命题的个数有( )
A.1个 B.2个 C.3个 D.4个
5.如图,C为的边OA上一点,过点C作交的平分线OE于点F,作交BO的延长线于点H,若,现有以下结论:①;②;③;④.结论正确的个数是( )
A.1个 B.2个 C.3个 D.4个
6.下列运算正确的是( )
A. B. C. D.
7.如图,将一张长方形纸片折叠,若,则的度数是( )
A.80° B.70° C.60° D.50°
8.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2021次碰到球桌边时,小球的位置是( )
A.(3,4) B.(5,4) C.(7,0) D.(8,1)
九、填空题
9.计算:﹣1=___.
十、填空题
10.平面直角坐标系中,点关于y轴的对称点的坐标为________.
十一、填空题
11.如图,在中,,,是的角平分线,,垂足为,,则__________.
十二、填空题
12.如下图,C岛在A岛的北偏东65°方向,在B岛的北偏西35°方向,则______度.
十三、填空题
13.如图,折叠三角形纸片ABC,使点B与点C重合,折痕为DE;展平纸片,连接AD.若AB=6cm,AC=4cm,则△ABD与△ACD的周长之差为____________.
十四、填空题
14.一列数a1,a2,a3,…,an,其中a1=﹣1,a2=,a3=,…,an=,则a2=_____;a1+a2+a3+…+a2020=_____;a1×a2×a3×…×a2020=_____.
十五、填空题
15.在平面直角坐标系中,已知线段且轴,且点的坐标是则点的坐标是____.
十六、填空题
16.在平面直角坐标系中,已知点A(﹣4,0),B(0,3),对△AOB连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4)…,那么第(2013)个三角形的直角顶点坐标是______
十七、解答题
17.计算:
(1)
(2)
十八、解答题
18.求下列各式中的x值:
(1)16(x+1)2=25; (2)8(1﹣x)3=125
十九、解答题
19.如图,,试说明.
证明:∵(已知)
∴________=________(垂直定义)
∴________//________(________________)
∵(________)
∴________//________(________________)
∴________(平行于同一直线的两条直线互相平行)
∴(________________________).
二十、解答题
20.如图,三角形在平面直角坐标系中.
(1)请写出三角形各点的坐标;
(2)求出三角形的面积;
(3)若把三角形向上平移2个单位,再向左平移1个单位得到三角形,在图中画出平移后三角形.
二十一、解答题
21.数学活动课上,王老师说:“是无理数,无理数就是无限不循环小数,同学们,你能把的小数部分全部写出来吗?”大家议论纷纷,小明同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用﹣1表示它的小数部分.”王老师说:“小明同学的说法是正确的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:
(1)填空题:的整数部分是 ;小数部分是
(2)已知8+=x+y,其中x是一个整数,且0<y<1,求出2x+(y-)2012的值.
二十二、解答题
22.喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为,宽为,且两块纸片面积相等.
(1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号)
(2)在长方形纸片上截出两个完整的正方形纸片,面积分别为和,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?(参考数据:,)
二十三、解答题
23.如图,直线AB∥直线CD,线段EF∥CD,连接BF、CF.
(1)求证:∠ABF+∠DCF=∠BFC;
(2)连接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求证:CE平分∠BCD;
(3)在(2)的条件下,G为EF上一点,连接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度数.
二十四、解答题
24.如图1,,在、内有一条折线.
(1)求证:;
(2)在图2中,画的平分线与的平分线,两条角平分线交于点,请你补全图形,试探索与之间的关系,并证明你的结论;
(3)在(2)的条件下,已知和均为钝角,点在直线、之间,且满足,,(其中为常数且),直接写出与的数量关系.
二十五、解答题
25.己知:如图①,直线直线,垂足为,点在射线上,点在射线上(、不与点重合),点在射线上且,过点作直线.点在点的左边且
(1)直接写出的面积 ;
(2)如图②,若,作的平分线交于,交于,试说明;
(3)如图③,若,点在射线上运动,的平分线交的延长线于点,在点运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.
【参考答案】
一、选择题
1.B
解析:B
【分析】
利用“三线八角”的定义分别判断后即可确定正确的选项.
【详解】
解:A、∠1和∠2是同旁内角,故错误;
B、∠1和∠2是同旁内角,正确;
C、∠1和∠5不是同位角,故错误;
D、∠1和∠4不是同旁内角,故错误,
故选:B.
【点睛】
本题考查了同位角、内错角及同旁内角的定义,解题的关键是了解三类角的定义,难度不大.
2.B
【分析】
根据平移的性质,图形平移前后的形状和大小没有变化,只是位置发生变化即可求解.
【详解】
解:A.选项是原图形旋转得到,不合题意;
B.选项是原图形平移得到,符合题意;
C.选项是原图形
解析:B
【分析】
根据平移的性质,图形平移前后的形状和大小没有变化,只是位置发生变化即可求解.
【详解】
解:A.选项是原图形旋转得到,不合题意;
B.选项是原图形平移得到,符合题意;
C.选项是原图形翻折得到,不合题意;
D.选项是原图形旋转得到,不合题意.
故选:B
【点睛】
本题考查了平移的性质,理解平移的定义和性质是解题关键.
3.D
【分析】
根据平面直角坐标系内各象限内点的坐标符号特征判定即可.
【详解】
解:根据平面直角坐标系内各象限内点的坐标符号特征可知:
在第四象限
故选D.
【点睛】
本题考查了各象限内点的坐标的符号特征,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).记住各象限内点的坐标的符号是解决的关键.
4.C
【分析】
根据无理数的定义,平行线公理,垂线的性质,平方根的定义逐项判断即可.
【详解】
解:(1)应该是无理数是无限不循环小数,是无限小数,故(1)是真命题;
(2)应该是过直线外一点,有且只有一条直线与已知直线平行,故(2)是假命题;
(3)应该是同一平面内,过一点有且只有一条直线与已知直线垂直,故(3)是假命题;
(4)1的平方根 ,故(4)是假命题;
所以假命题的个数有3个,
故选:C.
【点睛】
本题主要考查了无理数的定义,平行线公理,垂线的性质,平方根的定义,熟练掌握相关知识点是解题的关键.
5.D
【分析】
根据平行线的性质可得,结合角平分线的定义可判断①;再由平角的定义可判断②;由平行线的性质可判断③;由余角及补角的定义可判断④.
【详解】
解:,,
,
平分,
,故①正确;
,
,
,故②正确;
,,
,故③正确;
,,
,故④正确.
正确为①②③④,
故选:D.
【点睛】
本题主要考查平行线的性质,角平分线的定义,垂直的定义,灵活运用平行线的性质是解题的关键.
6.C
【分析】
利用立方根和算术平方根的定义,以及二次根式的化简得到结果,即可做出判断.
【详解】
解:A、,故本选项错误;
B、,故本选项错误;
C、,故本选项正确;
D、,故本选项错误;
故选:C.
【点睛】
此题考查了立方根和算术平方根,以及二次根式的化简,熟练掌握立方根和算术平方根的定义,二次根式的化简方法是解本题的关键.
7.A
【分析】
先由折叠的性质得出∠4=∠2=50°,再根据矩形对边平行可以得出答案.
【详解】
解:如图,
由折叠性质知∠4=∠2=50°,
∴∠3=180°-∠4-∠2=80°,
∵AB∥CD,
∴∠1=∠3=80°,
故选:A.
【点睛】
本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等的性质和折叠的性质.
8.B
【分析】
根据题意,可以画出相应的图形,然后即可发现点所在位置的变化特点,即可得到小球第2021次碰到球桌边时,小球的位置.
【详解】
解:由图可得,
点(1,0)第一次碰撞后的点的坐标为(0
解析:B
【分析】
根据题意,可以画出相应的图形,然后即可发现点所在位置的变化特点,即可得到小球第2021次碰到球桌边时,小球的位置.
【详解】
解:由图可得,
点(1,0)第一次碰撞后的点的坐标为(0,1),
第二次碰撞后的点的坐标为(3,4),
第三次碰撞后的点的坐标为(7,0),
第四次碰撞后的点的坐标为(8,1),
第五次碰撞后的点的坐标为(5,4),
第六次碰撞后的点的坐标为(1,0),
…,
∵2021÷6=336…5,
∴小球第2021次碰到球桌边时,小球的位置是(5,4),
故选:B.
【点睛】
本题考查了坐标确定位置,解答本题的关键是明确题意,发现点的坐标位置的变化特点,利用数形结合的思想解答.
九、填空题
9.1
【分析】
先计算算术平方根,然后计算减法.
【详解】
解:原式=2-1=1.
故答案是:1.
【点睛】
本题考查了算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x
解析:1
【分析】
先计算算术平方根,然后计算减法.
【详解】
解:原式=2-1=1.
故答案是:1.
【点睛】
本题考查了算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.
十、填空题
10.(3,-1)
【分析】
让纵坐标不变,横坐标互为相反数可得所求点的坐标.
【详解】
解:∵-3的相反数为3,
∴所求点的横坐标为3,纵坐标为-1,
故答案为(3,-1).
【点睛】
本题考查关于y轴
解析:(3,-1)
【分析】
让纵坐标不变,横坐标互为相反数可得所求点的坐标.
【详解】
解:∵-3的相反数为3,
∴所求点的横坐标为3,纵坐标为-1,
故答案为(3,-1).
【点睛】
本题考查关于y轴对称的点特点;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变.
十一、填空题
11.【解析】
已知∠C=90°,AD是△ABC的角平分线,DE⊥AB,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3.
解析:【解析】
已知∠C=90°,AD是△ABC的角平分线,DE⊥AB,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3.
十二、填空题
12.100
【分析】
根据方位角的概念,过点C作辅助线,构造两组平行线,利用平行线的性质即可求解.
【详解】
如图,作CE∥AD,则CE∥BF.
∵CE∥AD,∴=65°.
∵CE∥BF,∴=35°.
解析:100
【分析】
根据方位角的概念,过点C作辅助线,构造两组平行线,利用平行线的性质即可求解.
【详解】
如图,作CE∥AD,则CE∥BF.
∵CE∥AD,∴=65°.
∵CE∥BF,∴=35°.
∴=65°35°=100°.
故答案为:100.
【点睛】
本题考查了方位角的概念,解答题目的关键是作辅助线,构造平行线.两直线平行,内错角相等.
十三、填空题
13.2cm
【分析】
由折叠的性质可得BD=CD,即可求解.
【详解】
解:∵折叠三角形纸片ABC,使点B与点C重合,
∴BD=CD,
∵△ABD的周长=AB+BD+AD=6+BD+AD,△ACD的周长
解析:2cm
【分析】
由折叠的性质可得BD=CD,即可求解.
【详解】
解:∵折叠三角形纸片ABC,使点B与点C重合,
∴BD=CD,
∵△ABD的周长=AB+BD+AD=6+BD+AD,△ACD的周长=AC+AD+CD=4+CD+AD,
∴△ABD与△ACD的周长之差=6-4=2cm,
故答案为:2cm.
【点睛】
本题考查了翻折变换,掌握折叠的性质是本题关键.
十四、填空题
14., 1
【分析】
根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.
【详解】
解:由题意可得,
当a1=﹣1时,
a2===,
a3===
解析:, 1
【分析】
根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.
【详解】
解:由题意可得,
当a1=﹣1时,
a2===,
a3===2,
a4=﹣1,…,
∵2020÷3=673…1,
∴a1+a2+a3+…+a2020
=(﹣1++2)×673+(﹣1)
=×673+(﹣1)
=﹣
=,
a1×a2×a3×…×a2020
=[(﹣1)××2]673×(﹣1)
=(﹣1)673×(﹣1)
=(﹣1)×(﹣1)
=1,
故答案为:,,1.
【点睛】
本题考查有理数的运算,熟练掌握运算律及-1的指数幂运算是解题关键.
十五、填空题
15.或
【分析】
设点B的坐标为,然后根据轴得出B点的纵坐标,再根据即可得出B点的横坐标.
【详解】
设点B的坐标为,
∵轴,点A(1,2)
∴B点的纵坐标也是2,即 .
∵,
或 ,
解得或 ,
∴点
解析:或
【分析】
设点B的坐标为,然后根据轴得出B点的纵坐标,再根据即可得出B点的横坐标.
【详解】
设点B的坐标为,
∵轴,点A(1,2)
∴B点的纵坐标也是2,即 .
∵,
或 ,
解得或 ,
∴点B的坐标为或.
故答案为:或.
【点睛】
本题主要考查平行于x轴的线段上的点的特点,掌握平行于x轴的线段上的点的特点是解题的关键.
十六、填空题
16.(8052,0).
【分析】
观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可.
【详解
解析:(8052,0).
【分析】
观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可.
【详解】
解:∵点A(﹣4,0),B(0,3),
∴OA=4,OB=3,
∴AB==5,
∴第(3)个三角形的直角顶点的坐标是;
观察图形不难发现,每3个三角形为一个循环组依次循环,
∴一次循环横坐标增加12,
∵2013÷3=671
∴第(2013)个三角形是第671组的第三个直角三角形,
其直角顶点与第671组的第三个直角三角形顶点重合,
∴第(2013)个三角形的直角顶点的坐标是即.
故答案为:.
【点睛】
本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组依次循环是解题的关键.
十七、解答题
17.(1);(2).
【分析】
直接利用立方根以及算术平方根的定义化简得出答案.
【详解】
(1)
(2)
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.
解析:(1);(2).
【分析】
直接利用立方根以及算术平方根的定义化简得出答案.
【详解】
(1)
(2)
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.
十八、解答题
18.(1)或;(2)
【分析】
(1)根据平方根,即可解答;
(2)根据立方根,即可解答.
【详解】
解:(1)等式两边都除以16,得.
等式两边开平方,得.
所以,得.
所以,
解析:(1)或;(2)
【分析】
(1)根据平方根,即可解答;
(2)根据立方根,即可解答.
【详解】
解:(1)等式两边都除以16,得.
等式两边开平方,得.
所以,得.
所以,
(2)等式两边都除以8,得.
等式两边开立方,得.
所以,
【点睛】
本题考查平方根、立方根,解题关键是熟记平方根、立方根.
.
十九、解答题
19.,90;,同位角相等,两直线平行;已知;,内错角相等,两直线平行;;两直线平行,同位角相等.
【分析】
根据平行线的判定定理得到AB∥CD∥EF,再由平行线的性质证得结论,据此填空即可.
【详解】
解析:,90;,同位角相等,两直线平行;已知;,内错角相等,两直线平行;;两直线平行,同位角相等.
【分析】
根据平行线的判定定理得到AB∥CD∥EF,再由平行线的性质证得结论,据此填空即可.
【详解】
证明:∵(已知),
∴(垂直定义),
∴(同位角相等,两直线平行),
∵(已知),
∴(内错角相等,两直线平行),
∴(平行于同一直线的两条直线互相平行),
∴(两直线平行,同位角相等).
故答案为:CDF,90;AB,CD,同位角相等,两直线平行;已知;AB,EF,内错角相等,两直线平行;EF;两直线平行,同位角相等.
【点睛】
本题考查了平行线的判定与性质,熟练掌握性质及判定定理是解题的关键.
二十、解答题
20.(1),,;(2)7;(3)见解析
【分析】
(1)根据平面直角坐标系中点的位置,即可求解;
(2)三角形的面积为长方形面积减去三个直角三角形的面积,即可求解;
(3)根据点的平移规则,求得三点坐标
解析:(1),,;(2)7;(3)见解析
【分析】
(1)根据平面直角坐标系中点的位置,即可求解;
(2)三角形的面积为长方形面积减去三个直角三角形的面积,即可求解;
(3)根据点的平移规则,求得三点坐标,连接对应线段即可.
【详解】
解:(1)根据平面直角坐标系中点的位置,可得:
,,;
(2)三角形的面积
;
(3)三角形向上平移2个单位,再向左平移1个单位得到三角形
可得,,,连接,三角形如图所示:
【点睛】
此题考查了平面直角坐标系中点的坐标以及平移,熟练掌握平面直角坐标系中点的坐标以及平移规则是解题的关键.
二十一、解答题
21.(1)1;-1(2)19
【分析】
(1)根据已知的条件就可以求出;
(2)先估算的范围,进一步确定8+的范围,即可求出x,y的值,即可解答.
【详解】
解:(1)∵1<<2,
∴的整数部分是1;小
解析:(1)1;-1(2)19
【分析】
(1)根据已知的条件就可以求出;
(2)先估算的范围,进一步确定8+的范围,即可求出x,y的值,即可解答.
【详解】
解:(1)∵1<<2,
∴的整数部分是1;小数部分是-1;
(2)解:∵1<<2,
∴9<8+<10,
∵8+=x+y,且x是一个整数,0<y<1,
∴x=9,y=8+﹣9=﹣1,
∴2x+(y-)2012=2×9+(﹣1-)2012=18+1=19.
【点睛】
本题考查了估算无理数的大小,解决本题的关键是估算的范围.
二十二、解答题
22.(1);(2)不同意,理由见解析
【分析】
(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;
(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个
解析:(1);(2)不同意,理由见解析
【分析】
(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;
(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答.
【详解】
解:(1)设正方形边长为,则,由算术平方根的意义可知,
所以正方形的边长是.
(2)不同意.
因为:两个小正方形的面积分别为和,则它们的边长分别为和.,即两个正方形边长的和约为,
所以,即两个正方形边长的和大于长方形的长,
所以不能在长方形纸片上截出两个完整的面积分别为和的正方形纸片.
【点睛】
本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念.
二十三、解答题
23.(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.
【分析】
(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;
(2)由(1)的结论和垂直的定义解答即可;
解析:(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.
【分析】
(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;
(2)由(1)的结论和垂直的定义解答即可;
(3)由(1)的结论和三角形的角的关系解答即可.
【详解】
证明:(1)∵AB∥CD,EF∥CD,
∴AB∥EF,
∴∠ABF=∠BFE,
∵EF∥CD,
∴∠DCF=∠EFC,
∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;
(2)∵BE⊥EC,
∴∠BEC=90°,
∴∠EBC+∠BCE=90°,
由(1)可得:∠BFC=∠ABE+∠ECD=90°,
∴∠ABE+∠ECD=∠EBC+∠BCE,
∵BE平分∠ABC,
∴∠ABE=∠EBC,
∴∠ECD=∠BCE,
∴CE平分∠BCD;
(3)设∠BCE=β,∠ECF=γ,
∵CE平分∠BCD,
∴∠DCE=∠BCE=β,
∴∠DCF=∠DCE﹣∠ECF=β﹣γ,
∴∠EFC=β﹣γ,
∵∠BFC=∠BCF,
∴∠BFC=∠BCE+∠ECF=γ+β,
∴∠ABF=∠BFE=2γ,
∵∠FBG=2∠ECF,
∴∠FBG=2γ,
∴∠ABE+∠DCE=∠BEC=90°,
∴∠ABE=90°﹣β,
∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,
∵BE平分∠ABC,
∴∠CBE=∠ABE=90°﹣β,
∴∠CBG=∠CBE+∠GBE,
∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,
整理得:2γ+β=55°,
∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.
【点睛】
本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答.
二十四、解答题
24.(1)见解析;(2);见解析;(3)
【分析】
(1)过点作,根据平行线性质可得;
(2)由(1)结论可得:,,再根据角平分线性质可得;
(3)由(2)结论可得:.
【详解】
(1)证明:如图1,过
解析:(1)见解析;(2);见解析;(3)
【分析】
(1)过点作,根据平行线性质可得;
(2)由(1)结论可得:,,再根据角平分线性质可得;
(3)由(2)结论可得:.
【详解】
(1)证明:如图1,过点作,
∵,
∴,
∴,,
又∵,
∴;
(2)如图2,
由(1)可得:,,
∵的平分线与的平分线相交于点,
∴
,
∴;
(3)由(2)可得:,,
∵,,
∴
,
∴;
【点睛】
考核知识点:平行线性质和判定的综合运用.熟练运用平行线性质和判定是关键.
二十五、解答题
25.(1)3; (2)见解析; (3)见解析
【详解】
分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠
解析:(1)3; (2)见解析; (3)见解析
【详解】
分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE.
(3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案.
详解:(1)S△BCD=CD•OC=×3×2=3.
(2)如图②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°.∵直线MN⊥直线PQ,∴∠BOC=∠OBE+∠OEB=90°.∵BF是∠CBA的平分线,∴∠CBF=∠OBE.∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE.
(3)如图③,∵直线l∥PQ,∴∠ADC=∠PAD.∵∠ADC=∠DAC
∴∠CAP=2∠DAC.∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC.∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA
∵CH是,∠ACB的平分线,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=.
点睛:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解.
展开阅读全文