资源描述
初二上学期压轴题强化数学检测试题含答案
1.在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足.
(1)求点A和点B的坐标;
(2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;:
(3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标.
2.(1)如图1,已知:在ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E. 证明:DE=BD+CE.(提示:由于DE=AD+AE,证明AD=CE,AE=BD即可)
(2)如图2,将(1)中的条件改为:在ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意钝角,请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)如图3,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且ABF和ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试证明DEF是等边三角形.
3.在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a﹣8b+20=0.
(1)求a,b的值;
(2)点P在直线AB的右侧;且∠APB=45°,
①若点P在x轴上(图1),则点P的坐标为 ;
②若△ABP为直角三角形,求P点的坐标.
4.已知ABC中,∠BAC=60°,以AB和BC为边向外作等边ABD和等边BCE.
(1)连接AE、CD,如图1,求证:AE=CD;
(2)若N为CD中点,连接AN,如图2,求证:CE=2AN
(3)若AB⊥BC,延长AB交DE于M,DB=,如图3,则BM=_______(直接写出结果)
5.若整式A只含有字母x,且A的次数不超过3次,令,其中a,b,c,d为整数,在平面直角坐标系中,我们定义:M为整式A的关联点,我们规定次数超过3次的整式没有关联点.例如,若整式,则a=0,b=2,c=-5,d=4,故A的关联点为(-5,-11).
(1)若,试求出A的关联点坐标;
(2)若整式B是只含有字母x的整式,整式C是B与的乘积,若整式C的关联点为(6,15),求整式B的表达式.
(3)若整式D=x-2,整式E是只含有字母x的一次多项式,整式F是整式D与整式E的平方的乘积,若整式F的关联点为(-32,0),请直接写出整式E的表达式.
6.[背景]角的平分线是常见的几何模型,利用轴对称构造三角形全等可解决有关问题.
[问题]在四边形ABDE中,C是BD边的中点.
(1)如图1,若AC平分∠BAE,∠ACE=90°,则线段AE、AB、DE的长度满足的数量关系为______;(直接写出答案)
(2)如图2,AC平分∠BAE,EC平分∠AED,若∠ACE=120°,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明;
(3)如图3,若∠ACE=120°,AB=4,DE=9,BD=12,则AE的最大值是______.(直接写出答案)
7.方法探究:
已知二次多项式,我们把代入多项式,发现,由此可以推断多项式中有因式(x+3).设另一个因式为(x+k),多项式可以表示成,则有,因为对应项的系数是对应相等的,即,解得,因此多项式分解因式得:.我们把以上分解因式的方法叫“试根法”.
问题解决:
(1)对于二次多项式,我们把x= 代入该式,会发现成立;
(2)对于三次多项式,我们把x=1代入多项式,发现,由此可以推断多项式中有因式(),设另一个因式为(),多项式可以表示成,试求出题目中a,b的值;
(3)对于多项式,用“试根法”分解因式.
8.已知:为的中线,分别以和为一边在的外部作等腰三角形和等腰三角形,且,连接,.
(1)如图1,若,求的度数.
(2)如图1,求证:.
(3)如图2,设交于点,交于点与交于点,若点为中点,且,请探究和的数量关系,并直接写出答案(不需要证明).
【参考答案】
2.(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)
【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;
(2)
解析:(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)
【分析】(1)结合题意,根据绝对值和乘方的性质,得,,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;
(2)如图,过点F作FH⊥AO于点H,根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案;
(3)过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解.
【详解】(1)∵,
∴.
∵,
∴,
∴,
∴,
∴,.
(2)如图,过点F作FH⊥AO于点H
∵AF⊥AE
∴∠FHA=∠AOE=90°,
∵
∴∠AFH=∠EAO
又∵AF=AE,
在和中
∴
∴AH=EO=2,FH=AO=4
∴OH=AO-AH=2
∴F(-2,4)
∵OA=BO,
∴FH=BO
在和中
∴
∴HD=OD
∵
∴HD=OD=1
∴D(-1,0)
∴D(-1,0),F(-2,4);
(3)如图,过点N分别作NQ⊥ON交OM的延长线于点Q,NG⊥PN交EM的延长线于点G,再分别过点Q和点N作QR⊥EG于点R,NS⊥EG于点S
∴
∴,
∴
∴
∴
∴等腰
∴NQ=NO,
∵NG⊥PN, NS⊥EG
∴
∴,
∴
∵,
∴
∵点E为线段OB的中点
∴
∴
∴
∴
∴
∴
∴
∴等腰
∴NG=NP,
∵
∴
∴∠QNG=∠ONP
在和中
∴
∴∠NGQ=∠NPO,GQ=PO
∵,
∴PO=PB
∴∠POE=∠PBE=45°
∴∠NPO=90°
∴∠NGQ=90°
∴∠QGR=45°.
在和中
∴.
∴QR=OE
在和中
∴
∴QM=OM.
∵NQ=NO,
∴NM⊥OQ
∵
∴等腰
∴
∵
∴
在和中
∴
∴NS=EM=4,MS=OE=2
∴N(-6,2).
【点睛】本题考查了直角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解.
3.(1)见解析;(2)成立,见解析;(3)见解析
【分析】(1)运用AAS证明△ADB≌△CEA即可;
(2)运用AAS证明△ADB≌△CEA即可;
(3)运用SAS证明△DBF≌△EAF,后运
解析:(1)见解析;(2)成立,见解析;(3)见解析
【分析】(1)运用AAS证明△ADB≌△CEA即可;
(2)运用AAS证明△ADB≌△CEA即可;
(3)运用SAS证明△DBF≌△EAF,后运用有一个角是60°的等腰三角形是等边三角形证明即可.
【详解】(1)如图1,∵BD⊥直线m,CE⊥直线m,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
在△ADB和△CEA中,,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(2)如图2,
∵∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=,
∴∠DBA=∠CAE,
在△ADB和△CEA中,,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(3)如图3,
由(2)可知,△ADB≌△CEA,
∴BD=AE,∠DBA=∠CAE,
∵△ABF和△ACF均为等边三角形,
∴∠ABF=∠CAF=60°,BF=AF,
∴∠DBA+∠ABF=∠CAE+∠CAF,
∴∠DBF=∠FAE,
∵在△DBF和△EAF中,
,
∴△DBF≌△EAF(SAS),
∴DF=EF,∠BFD=∠AFE,
∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,
∴△DEF为等边三角形.
【点睛】本题考查了三角形全等的判定和性质,等边三角形的判定,熟练掌握三角形全等的判定是解题的关键.
4.(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2).
【分析】(1)利用非负数的性质解决问题即可.
(2)①根据等腰直角三角形的性质即可解决问题.
②分两种情形:
解析:(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2).
【分析】(1)利用非负数的性质解决问题即可.
(2)①根据等腰直角三角形的性质即可解决问题.
②分两种情形:如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.分别利用全等三角形的性质解决问题即可.
【详解】(1)∵a2+4a+4+b2﹣8b+16=0
∴(a+2)2+(b﹣4)2=0
∴a=﹣2,b=4.
(2)①如图1中,
∵∠APB=45°,∠POB=90°,
∴OP=OB=4,
∴P(4,0).
故答案为(4,0).
②∵a=﹣2,b=4
∴OA=2OB=4
又∵△ABP为直角三角形,∠APB=45°
∴只有两种情况,∠ABP=90°或∠BAP=90°
①如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.
∴∠PCB=∠BOA=90°,
又∵∠APB=45°,
∴∠BAP=∠APB=45°,
∴BA=BP,
又∵∠ABO+∠OBP=∠OBP+∠BPC=90°,
∴∠ABO=∠BPC,
∴△ABO≌△BPC(AAS),
∴PC=OB=4,BC=OA=2,
∴OC=OB﹣BC=4﹣2=2,
∴P(4,2).
②如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.
∴∠PDA=∠AOB=90°,
又∵∠APB=45°,
∴∠ABP=∠APB=45°,
∴AP=AB,
又∵∠BAD+∠DAP=90°,
∠DPA+∠DAP=90°,
∴∠BAD=∠DPA,
∴△BAO≌△APP(AAS),
∴PD=OA=2,AD=OB=4,
∴OD=AD﹣0A=4﹣2=2,
∴P(2,﹣2).
综上述,P点坐标为(4,2),(2,﹣2).
【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.
5.(1)见解析
(2)见解析
(3)
【分析】(1)先判断出∠DBC=∠ABE,进而判断出△DBC≌△ABE,即可得出结论;
(2)先判断出△ADN≌△FCN,得出CF=AD,∠NCF=∠AN
解析:(1)见解析
(2)见解析
(3)
【分析】(1)先判断出∠DBC=∠ABE,进而判断出△DBC≌△ABE,即可得出结论;
(2)先判断出△ADN≌△FCN,得出CF=AD,∠NCF=∠AND,进而判断出∠BAC=∠ACF,即可判断出△ABC≌△CFA,即可得出结论;
(3)先判断出△ABC≌△HEB(ASA),得出,,再判断出△ADM≌△HEM (AAS),得出AM=HM,即可得出结论.
(1)
解:∵△ABD和△BCE是等边三角形,
∴BD=AB,BC=BE,∠ABD=∠CBE=60°,
∴∠ABD+∠ABC=∠CBE+∠ABC,
∴∠DBC=∠ABE,
∴△ABE≌△DBC(SAS),
∴AE=CD;
(2)
解:如图,延长AN使NF=AN,连接FC,
∵N为CD中点,
∴DN=CN,
∵∠AND=∠FNC,
∴△ADN≌△FCN(SAS),
∴CF=AD,∠NCF=∠AND,
∵∠DAB=∠BAC=60°
∴∠ACD +∠ADN=60°
∴∠ACF=∠ACD+∠NCF=60°,
∴∠BAC=∠ACF,
∵△ABD是等边三角形,
∴AB=AD,
∴AB=CF,
∵AC=CA,
∴△ABC≌△CFA (SAS),
∴BC=AF,
∵△BCE是等边三角形,
∴CE=BC=AF=2AN;
(3)
解: ∵△ABD是等边三角形,
∴,∠BAD=60°,
在Rt△ABC中,∠ACB=90°-∠BAC=30°,
∴,
如图,过点E作EH // AD交AM的延长线于H,
∴∠H=∠BAD=60°,
∵△BCE是等边三角形,
∴BC=BE,∠CBE=60°,
∵∠ABC=90°,
∴∠EBH=90°-∠CBE=30°=∠ACB,
∴∠BEH=180°-∠EBH-∠H=90°=∠ABC,
∴△ABC≌△HEB (ASA),
∴,,
∴AD=EH,
∵∠AMD=∠HME,
∴△ADM≌△HEM (AAS),
∴AM=HM,
∴
∵,,
∴.
故答案为:.
【点睛】此题是三角形综合题,主要考查了等边三角形的性质,含30°角的直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键.
6.(1)
(2)
(3)或
【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标;
(2)根据题意得出中的次数为次,设 ,计算出,进而表达出,,,的值,再根据的关
解析:(1)
(2)
(3)或
【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标;
(2)根据题意得出中的次数为次,设 ,计算出,进而表达出,,,的值,再根据的关联点为,列出关于 , 的等式,解出、的值即可;
(3)设,根据题意求出,进而表达出,,,的值,再根据的关联点为,列出关于,的等式,解出、的值即可.
(1)
解:(1),
,,,,
,,
的关联点坐标为:,
故笞案为:;
(2)
整式是只含有字母的整式,整式是与的乘积,
是二次多项式,且的次数不能超过次,
中的次数为次,
设 ,
,
,,,,
整式的关联点为,
,,
解得:,,
;
(3)
根据题意:设,
,
,,,,
整式 的关联点为,
,,
,,
,
把代入得: ,
解得: ,
或,
或.
【点睛】本题主要考查整式的乘法,掌握整式的乘法是解决问题的关键.
7.(1)AE=AB+DE
(2)AE=AB+DE+BD
(3)
【分析】(1)在AE上取一点F,使AF=AB,及可以得出△ACB≌△ACF,就可以得出BC=FC,∠ACB=∠ACF,就可以得出△
解析:(1)AE=AB+DE
(2)AE=AB+DE+BD
(3)
【分析】(1)在AE上取一点F,使AF=AB,及可以得出△ACB≌△ACF,就可以得出BC=FC,∠ACB=∠ACF,就可以得出△CEF≌△CED.就可以得出结论;
(3)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG.可以求得CF=CG,△CFG是等边三角形,就有FG=CG=BD,进而得出结论;
(3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG.根据两点之间线段最短解决问题即可.
(1)
AE=AB+DE;
理由:在AE上取一点F,使AF=AB,
∵AC平分∠BAE,
∴∠BAC=∠FAC.
在△ACB和△ACF中,
,
∴△ACB≌△ACF(SAS),
∴BC=FC,∠ACB=∠ACF.
∵C是BD边的中点.
∴BC=CD,
∴CF=CD.
∵∠ACE=90°,
∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90°
∴∠ECF=∠ECD.
在△CEF和△CED中,
,
∴△CEF≌△CED(SAS),
∴EF=ED.
∵AE=AF+EF,
∴AE=AB+DE,
故答案为:AE=AB+DE;
(2)
猜想:AE=AB+DE+BD.
证明:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG.
∵C是BD边的中点,
∴CB=CD=BD.
∵AC平分∠BAE,
∴∠BAC=∠FAC.
在△ACB和△ACF中,
∴△ACB≌△ACF(SAS),
∴CF=CB,
∴∠BCA=∠FCA.
同理可证:CD=CG,
∴∠DCE=∠GCE.
∵CB=CD,
∴CG=CF
∵∠ACE=120°,
∴∠BCA+∠DCE=180°-120°=60°.
∴∠FCA+∠GCE=60°.
∴∠FCG=60°.
∴△FGC是等边三角形.
∴FG=FC=BD.
∵AE=AF+EG+FG.
∴AE=AB+DE+BD.
(3)
作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG,如图所示:
∵C是BD边的中点,
∴CB=CD=BD=,
∵△ACB≌△ACF(SAS),
∴CF=CB=,
∴∠BCA=∠FCA,
同理可证:CD=CG=,
∴∠DCE=∠GCE,
∵CB=CD,
∴CG=CF,
∵∠ACE=120°,
∴∠BCA+∠DCE=180°-120°=60°,
∴∠FCA+∠GCE=60°,
∴∠FCG=60°,
∴△FGC是等边三角形,
∴FC=CG=FG=,
∵AE≤AF+FG+EG,
∴当A、F、G、E共线时AE的值最大,最大值为.
故答案为:.
【点睛】本题考查了四边形的综合题,角平分线的性质的运用,全等三角形的判定及性质的运用,等边三角形的性质的运用,勾股定理的运用,解答时证明三角形全等是关键.
8.(1)±2
(2)a=0,b=-3;
(3)
【分析】(1)将x=±2代入即可;
(2)由题意得x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,再由系数关系求a、b即可;
(
解析:(1)±2
(2)a=0,b=-3;
(3)
【分析】(1)将x=±2代入即可;
(2)由题意得x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,再由系数关系求a、b即可;
(3)多项式有因式(x-2),设另一个因式为(x2+ax+b),则x3+4x2-3x-18=x3+(a-2)x2-(2a-b)x-2b,再由系数关系求a、b即可.
(1)
解:当x=±2时,x2-4=0,
故答案为:±2;
(2)
解:由题意可知x3-x2-3x+3=(x-1)(x2+ax+b),
∴x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,
∴1-a=1,b=-3,
∴a=0,b=-3;
(3)
解:当x=2时,x3+4x2-3x-18=8+16-6-18=0,
∴多项式有因式(x-2),
设另一个因式为(x2+ax+b),
∴x3+4x2-3x-18=(x-2)(x2+ax+b),
∴x3+4x2-3x-18=x3+(a-2)x2-(2a-b)x-2b,
∴a-2=4,2b=18,
∴a=6,b=9,
∴x3+4x2-3x-18=(x-2)(x2+6x+9)=(x-2)(x+3)2.
【点睛】本题考查因式分解的意义,理解“试根法”的本质,多项式乘多项式的正确展开是解题的关键.
9.(1)∠BAC=50°;
(2)见解析;
(3)
【分析】(1)利用三角形内角和定理求出∠EAB和∠CAF,再根据构建方程即可解决问题;
(2)延长AD至H,使DH=AD,连接BH,想办法证
解析:(1)∠BAC=50°;
(2)见解析;
(3)
【分析】(1)利用三角形内角和定理求出∠EAB和∠CAF,再根据构建方程即可解决问题;
(2)延长AD至H,使DH=AD,连接BH,想办法证明△ABH≌△EAF即可解决问题;
(3)先证明△ACD≌△FAG,推出∠ACD=∠FAG,再证明∠BCF=150°即可.
(1)
∵AE=AB,
∴∠AEB=∠ABE=65°,
∴∠EAB=50°,
∵AC=AF,
∴∠ACF=∠AFC=75°,
∴∠CAF=30°,
∵∠EAF+∠BAC=180°,
∴∠EAB+2∠ABC+∠FAC=180°,
∴50°+2∠BAC+30°=180°,
∴∠BAC=50°.
(2)
证明:延长AD至H,使DH=AD,连接BH,
∵EF=2AD,
∴AH=EF,
在△BDH和△CDA中,
,
∴△BDH≌△CDA,
∴HB=AC=AF,∠BHD=∠CAD,
∴AC∥BH,
∴∠ABH+∠BAC=180°,
∵∠EAF+∠BAC=180°,
∴∠EAF=∠ABH,
在△ABH和△EAF中,
,
∴△ABH≌△EAF,
∴∠AEF=∠ABH,EF=AH=2AD,
(3)
结论:∠GAF-∠CAF=60°.
由(1)得,AD=EF,又点G为EF中点,
∴EG=AD,
在△EAG和△ABD中,
,
∴△EAG≌△ABD,
∴∠EAG=∠ABC=60°,
∴△AEB是等边三角形,
∴∠ABE=60°,
∴∠CBM=60°,
在△ACD和△FAG中,
,
∴△ACD≌△FAG,
∴∠ACD=∠FAG,
∵AC=AF,∴∠ACF=∠AFC,
在四边形ABCF中,∠ABC+∠BCF+∠CFA+∠BAF=360°,
∴60°+2∠BCF=360°,
∴∠BCF=150°,
∴∠BCA+∠ACF=150°,
∴∠GAF+(180°-∠CAF)=150°,
∴∠GAF-∠CAF=60°.
.
【点睛】本题考查三角形综合题,涉及全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
展开阅读全文