资源描述
人教中学七年级下册数学期末综合复习题含答案
一、选择题
1.的平方根是()
A. B. C. D.
2.下列图形中,哪个可以通过图1平移得到( )
A. B. C. D.
3.在平面直角坐标系中,点P(﹣5,4)位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列命题中是假命题的是( ).
A.等角的补角相等 B.平行于同一条直线的两条直线平行
C.对顶角相等 D.同位角相等
5.如图,AB∥CD,∠EBF=∠FBA,∠EDG=∠GDC,∠E=45°,则∠H为( )
A.22° B.22.5° C.30° D.45°
6.下列说法不正确的是( )
A.的平方根是± B.﹣9是81的平方根
C.0.4的算术平方根是0.2 D.=﹣3
7.如图,已知,平分,,则的度数是( )
A. B. C. D.
8.如图,在平面直角坐标系中,放置半径为1的圆,圆心到两坐标轴的距离都等于半径,若该圆向x轴正方向滚动2017圈(滚动时在x轴上不滑动),此时该圆圆心的坐标为( )
A.(2018,1) B.(4034π+1,1) C.(2017,1) D.(4034π,1)
九、填空题
9.已知+|3x+2y﹣15|=0,则=_____.
十、填空题
10.已知点在第四象限,,则点A关于y轴对称的坐标是__________.
十一、填空题
11.如图,在中,.三角形的外角和的角平分线交于点E,则_____度.
十二、填空题
12.将一副直角三角板如图放置(其中,),点在上,,则的度数是______.
十三、填空题
13.如图,把一张长方形纸片沿折叠后,、分别落在,的位置上,与交于点,若,则______.
十四、填空题
14.已知的小数部分是,的小数部分是,则________.
十五、填空题
15.把所有的正整数按如图所示规律排列形成数表.若正整数6对应的位置记为,则对应的正整数是_______.
第1列
第2列
第3列
第4列
……
第1行
1
2
5
10
……
第2行
4
3
6
11
……
第3行
9
8
7
12
……
第4行
16
15
14
13
……
第5行
……
……
……
……
……
十六、填空题
16.如图,在直角坐标系中,A(1,3),B(2,0),第一次将△AOB变换成△OA1B1,A1(2,3),B1(4,0);第二次将△OA1B1变换成△OA2B2,A2(4,3),B2(8,0),第三次将△OA2B2变换成△OA3B3,……,则B2021的横坐标为______.
十七、解答题
17.(1)计算:
(2)计算:
(3)计算:
(4)计算:
十八、解答题
18.求下列各式中的值:
(1);
(2);
(3).
十九、解答题
19.如图,点,分别是、上的点,,.
(1)对说明理由,将下列解题过程补充完整.
解:(已知)
________(________________________)
(已知)
___________(________________________)
(______________________________)
(2)若比大,求的度数.
二十、解答题
20.与在平面直角坐标系中的位置如图.
(1)分别写出下列各点的坐标: ; ; ;
(2)说明由经过怎样的平移得到?答:_______________.
(3)若点是内部一点,则平移后内的对应点的坐标为_________;
(4)求的面积.
二十一、解答题
21.阅读下面的文字,解答问题:
大家知道,是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差是小数部分.
又例如,因为,即,所以的整数部分为2,小数部分为.请解答:
(1)的整数部分为 ;小数部分为 ;
(2)如果的整数部分为a,的小数部分为b,求的值.
二十二、解答题
22.喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为,宽为,且两块纸片面积相等.
(1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号)
(2)在长方形纸片上截出两个完整的正方形纸片,面积分别为和,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?(参考数据:,)
二十三、解答题
23.如图1,已AB∥CD,∠C=∠A.
(1)求证:AD∥BC;
(2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明.
(3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°,
①直接写出∠AED与∠FDC的数量关系: .
②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,补全图形后,求∠EPD的度数
二十四、解答题
24.已知:和同一平面内的点.
(1)如图1,点在边上,过作交于,交于.根据题意,在图1中补全图形,请写出与的数量关系,并说明理由;
(2)如图2,点在的延长线上,,.请判断与的位置关系,并说明理由.
(3)如图3,点是外部的一个动点.过作交直线于,交直线于,直接写出与的数量关系,并在图3中补全图形.
二十五、解答题
25.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍.
(1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________
(2)如图1,已知∠MON=60°,在射线OM上取一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“梦想三角形”,为什么?
(3)如图2,点D在△ABC的边上,连接DC,作∠ADC的平分线交AC于点E,在DC上取一点F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“梦想三角形”,求∠B的度数.
【参考答案】
一、选择题
1.A
解析:A
【分析】
如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作.
【详解】
解:的平方根是.
故选A.
【点睛】
本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.
2.A
【详解】
试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A.
考点:平移的性质.
解析:A
【详解】
试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A.
考点:平移的性质.
3.B
【分析】
根据各象限内点的坐标特征解答.
【详解】
解:点P(﹣5,4)位于第二象限.
故选:B.
【点睛】
本题主要考查点的坐标,熟练掌握点的坐标象限的符合特征:第一象限为“+、+”,第二象限为“-,+”,第三象限为“-,-”,第四象限为“+,-”是解题的关键.
4.D
【分析】
根据等角的补角,平行线的性质,对顶角的性质,进行判断.
【详解】
A. 等角的补角相等,是真命题,不符合题意;
B. 平行于同一条直线的两条直线平行,是真命题,不符合题意;
C. 对顶角相等,是真命题,不符合题意;
D. 两直线平行,同位角相等,原命题是假命题,符合题意;
故选D.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质及补角的定义等知识.
5.B
【分析】
过作,过作,利用平行线的性质解答即可.
【详解】
解:过作,过作,
,
,
,,
,,
,,,
,
.
故选:B.
【点睛】
此题考查平行线的性质,关键是作出辅助线,利用平行线的性质解答.
6.C
【分析】
根据立方根与平方根的定义即可求出答案.
【详解】
解:0.4的算术平方根为 ,故C错误,
故选C.
【点睛】
考查平方根与立方根,解题的关键是正确理解概念,本题属于基础题型.
7.B
【分析】
利用平行线的性质,角平分线的定义即可解决问题.
【详解】
解:∵,,平分,
∴,,
∵,
∴,
故选:B.
【点睛】
本题考查平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
8.B
【分析】
首先求出圆心坐标(1,1),再根据圆的滚动情况求出平移距离,再根据点平移时其坐标变化规律求解即可.
【详解】
解:∵圆的半径为1,且圆心到两坐标轴的距离都等于半径,
∴圆心坐标(1,1
解析:B
【分析】
首先求出圆心坐标(1,1),再根据圆的滚动情况求出平移距离,再根据点平移时其坐标变化规律求解即可.
【详解】
解:∵圆的半径为1,且圆心到两坐标轴的距离都等于半径,
∴圆心坐标(1,1).
∵圆向x轴正方向滚动2017圈,
∴圆沿x轴正方向平移个单位长度.
∴圆心沿x轴正方向平移个单位长度.
∴平移后圆心坐标.
故选:B.
【点睛】
本题考查了点平移时其坐标变化规律,点向左(右)平移时,横坐标减(加)平移距离,点向下(上)平移时,纵坐标减(加)平移距离.
九、填空题
9.3
【分析】
直接利用非负数的性质得出x,y的值进而得出答案.
【详解】
∵+|3x+2y﹣15|=0,
∴x+3=0,3x+2y-15=0,
∴x=-3,y=12,
∴=.
故答案是:3.
【点睛
解析:3
【分析】
直接利用非负数的性质得出x,y的值进而得出答案.
【详解】
∵+|3x+2y﹣15|=0,
∴x+3=0,3x+2y-15=0,
∴x=-3,y=12,
∴=.
故答案是:3.
【点睛】
考查了非负数的性质,正确得出x,y的值是解题关键.
十、填空题
10.【分析】
由第四象限点的坐标符号是(+,-),可得,关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可求解.
【详解】
解:因为在第四象限,则,所以,
又因为关于y轴对称,x值相反,y值不变,
解析:
【分析】
由第四象限点的坐标符号是(+,-),可得,关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可求解.
【详解】
解:因为在第四象限,则,所以,
又因为关于y轴对称,x值相反,y值不变,
所以点A关于y轴对称点坐标为.
故答案为.
【点睛】
本题考查点的坐标的意义和对称的特点.关键是掌握点的坐标的变化规律.
十一、填空题
11.【分析】
如图,先根据三角形的内角和定理求出∠1+∠2的度数,再求出∠DAC+∠ACF的度数,然后根据角平分线的定义可求出∠3+∠4的度数,进而可得答案.
【详解】
解:如图,∵∠B=40°,∴∠
解析:【分析】
如图,先根据三角形的内角和定理求出∠1+∠2的度数,再求出∠DAC+∠ACF的度数,然后根据角平分线的定义可求出∠3+∠4的度数,进而可得答案.
【详解】
解:如图,∵∠B=40°,∴∠1+∠2=180°-∠B=140°,
∴∠DAC+∠ACF=360°-∠1-∠2=220°,
∵AE和CE分别是和的角平分线,
∴,
∴,
∴.
故答案为:70.
【点睛】
本题考查了三角形的内角和定理和角平分线的定义,属于基础题型,熟练掌握三角形的内角和定理和整体的数学思想是解题的关键.
十二、填空题
12.【分析】
由题意得∠ACB=30°,∠DEF=45°,根据ED∥BC,可以得到∠DEC=∠ACB=30°,即可求解.
【详解】
解:由图形可知:∠ACB=30°,∠DEF=45°
∵ED∥BC,
解析:
【分析】
由题意得∠ACB=30°,∠DEF=45°,根据ED∥BC,可以得到∠DEC=∠ACB=30°,即可求解.
【详解】
解:由图形可知:∠ACB=30°,∠DEF=45°
∵ED∥BC,
∴∠DEC=∠ACB=30°
∴∠CEF=∠DEF-∠DEC =45°-30°=15°,
∴∠AEF=180°-∠CEF=165°
故答案为:165°.
【点睛】
本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质.
十三、填空题
13.68°
【分析】
先根据平行线的性质求得∠DEF的度数,再根据折叠求得∠DEG的度数,最后计算∠AEG的大小.
【详解】
解:∵AD//BC,,
∴∠DEF=∠EFG=56°,
由折叠可得,∠GEF
解析:68°
【分析】
先根据平行线的性质求得∠DEF的度数,再根据折叠求得∠DEG的度数,最后计算∠AEG的大小.
【详解】
解:∵AD//BC,,
∴∠DEF=∠EFG=56°,
由折叠可得,∠GEF=∠DEF=56°,
∴∠DEG=112°,
∴∠AEG=180°-112°=68°.
故答案为:68°.
【点睛】
本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等.
十四、填空题
14.1
【分析】
根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果.
【详解】
解析:1
【分析】
根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果.
【详解】
解:∵4<7<9,
∴2<<3,∴-3<-<-2,
∴7<5+<8,2<5-<3,
∴5+的整数部分是7,5-的整数部分为2,
∴a=5+-7=-2,b=5--2=3-,
∴12019=1.
故答案为:1.
【点睛】
此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键.
十五、填空题
15.138
【分析】
根据表格中的数据,以及正整数6对应的位置记为,可得表示方法,观察出1行1列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n行n列数的特点为(n2-n
解析:138
【分析】
根据表格中的数据,以及正整数6对应的位置记为,可得表示方法,观察出1行1列数的特点为12-0,2行2列数的特点为22-1,3行3列数的特点为32-2,…n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,由此进一步解决问题.
【详解】
解:∵正整数6对应的位置记为,
即表示第2行第3列的数,
∴表示第12行第7列的数,
由1行1列的数字是12-0=12-(1-1)=1,
2行2列的数字是22-1=22-(2-1)=3,
3行3列的数字是32-2=32-(3-1)=7,
…
n行n列的数字是n2-(n-1)=n2-n+1,
∴第12行12列的数字是122-12+1=133,
∴第12行第7列的数字是138,
故答案为:138.
【点睛】
此题考查观察分析归纳总结顾虑的能力,解答此题的关键是找出两个规律,即n行n列数的特点为(n2-n+1),且每一行的第一个数字逆箭头方向顺次减少1,此题有难度.
十六、填空题
16.【分析】
根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解.
【详解】
解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可
解析:
【分析】
根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解.
【详解】
解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可得:,
∴B2021的横坐标为;
故答案为.
【点睛】
本题主要考查图形与坐标,解题的关键是根据题意得到点的坐标规律.
十七、解答题
17.(1);(2);(3);(4)
【分析】
(1)根据算术平方根的求法计算即可;
(2)先化简绝对值,再合并即可;
(3)分别进行二次根式的化简、开立方,然后合并求解;
(4)先化简绝对值和二次根式,
解析:(1);(2);(3);(4)
【分析】
(1)根据算术平方根的求法计算即可;
(2)先化简绝对值,再合并即可;
(3)分别进行二次根式的化简、开立方,然后合并求解;
(4)先化简绝对值和二次根式,再合并即可.
【详解】
解:(1)
(2)
(3)
(4)
【点睛】
本题考查了实数的运算,涉及了二次根式的化简、绝对值的化简、开立方等知识.
十八、解答题
18.(1)0.2;(2);(3)5
【分析】
(1)直接利用立方根的性质计算得出答案;
(2)直接将-3移项,合并再利用立方根的性质计算得出答案;
(3)直接利用立方根的性质计算得出x-1的值,进而得出
解析:(1)0.2;(2);(3)5
【分析】
(1)直接利用立方根的性质计算得出答案;
(2)直接将-3移项,合并再利用立方根的性质计算得出答案;
(3)直接利用立方根的性质计算得出x-1的值,进而得出x的值.
【详解】
解:(1)x3=0.008,
则x=0.2;
(2)x3-3=
则x3=3+
故x3=
解得:x=;
(3)(x-1)3=64
则x-1=4,
解得:x=5.
【点睛】
此题主要考查了立方根,正确把握立方根的定义是解题关键.
十九、解答题
19.(1)∠BFD;两直线平行,同位角相等;∠BFD;等量代换;内错角相等,两直线平行;(2)70°
【分析】
(1)根据平行线的性质得出∠A=∠BFD,求出∠BFD=∠FDE,根据平行线的判定得出即可
解析:(1)∠BFD;两直线平行,同位角相等;∠BFD;等量代换;内错角相等,两直线平行;(2)70°
【分析】
(1)根据平行线的性质得出∠A=∠BFD,求出∠BFD=∠FDE,根据平行线的判定得出即可;
(2)根据平行线的性质得出∠A+∠AED=180°,∠A=∠BFD,再求出∠AED﹣∠A=40°,即可求出答案.
【详解】
(1)证明:∵DFAC(已知),
∴∠A=∠BFD(两直线平行,同位角相等),
∵∠A=∠FDE(已知),
∴∠FDE=∠BFD(等量代换),
∴DEAB(内错角相等,两直线平行);
故答案为:∠BFD;两直线平行,同位角相等;∠BFD;等量代换;内错角相等,两直线平行;
(2)解:∵DFAC,
∴∠A=∠BFD,
∵∠AED比∠BFD大40°,
∴∠AED﹣∠BFD=40°,
∴∠AED﹣∠A=40°,
∴∠AED=40°+∠A,
∵DEAB,
∴∠A+∠AED=180°,
∴∠A+40°+∠A=180°,
∴∠A=70°,
∴∠BFD=70°.
【点睛】
本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.
二十、解答题
20.(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2
【分析】
(1)根据平面直角坐标系写出各点的坐标即可;
(2)根据对
解析:(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2
【分析】
(1)根据平面直角坐标系写出各点的坐标即可;
(2)根据对应点A、A′的变化写出平移方法即可;
(3)根据平移规律逆向写出点P′的坐标;
(4)利用△ABC所在的长方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.
【详解】
解:(1)A′(-3,1); B′(-2,-2);C′(-1,-1);
(2)向左平移4个单位,向下平移2个单位;
(3)若点P(a,b)是△ABC内部一点,
则平移后△A'B'C'内的对应点P'的坐标为:(a-4,b-2);
(4)△ABC的面积==2.
【点睛】
本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键.
二十一、解答题
21.(1)9,;(2)15
【分析】
(1)根据题意求出所在整数范围,即可求解;
(2)求出a,b然后代入代数式即可.
【详解】
解:(1)∵,即
∴的整数部分为9,小数部分为
(2)∵,即
∴的整数部
解析:(1)9,;(2)15
【分析】
(1)根据题意求出所在整数范围,即可求解;
(2)求出a,b然后代入代数式即可.
【详解】
解:(1)∵,即
∴的整数部分为9,小数部分为
(2)∵,即
∴的整数部分为5,小数部分为
∴,
【点睛】
此题主要考查了二次根式的大小,熟练掌握二次根式的有关性质是解题的关键.
二十二、解答题
22.(1);(2)不同意,理由见解析
【分析】
(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;
(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个
解析:(1);(2)不同意,理由见解析
【分析】
(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;
(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答.
【详解】
解:(1)设正方形边长为,则,由算术平方根的意义可知,
所以正方形的边长是.
(2)不同意.
因为:两个小正方形的面积分别为和,则它们的边长分别为和.,即两个正方形边长的和约为,
所以,即两个正方形边长的和大于长方形的长,
所以不能在长方形纸片上截出两个完整的面积分别为和的正方形纸片.
【点睛】
本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念.
二十三、解答题
23.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°
【分析】
(1)根据平行线的性质及判定可得结论;
(2)过点E作EF∥AB,根
解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°
【分析】
(1)根据平行线的性质及判定可得结论;
(2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论;
(3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系;
②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度数.
【详解】
解:(1)证明:AB∥CD,
∴∠A+∠D=180°,
∵∠C=∠A,
∴∠C+∠D=180°,
∴AD∥BC;
(2)∠BAE+∠CDE=∠AED,理由如下:
如图2,过点E作EF∥AB,
∵AB∥CD
∴AB∥CD∥EF
∴∠BAE=∠AEF,∠CDE=∠DEF
即∠FEA+∠FED=∠CDE+∠BAE
∴∠BAE+∠CDE=∠AED;
(3)①∠AED-∠FDC=45°;
∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,
∴∠AEC=∠DEC+∠AEB,
∴∠AED=∠AEB,
∵DF平分∠EDC
∠DEC=2∠FDC
∴∠DEC=90°-2∠FDC,
∴2∠AED+(90°-2∠FDC)=180°,
∴∠AED-∠FDC=45°,
故答案为:∠AED-∠FDC=45°;
②如图3,
∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,
∴∠F=45°,
∴∠DEP=2∠F=90°,
∵∠DEA-∠PEA=∠DEB=∠DEA,
∴∠PEA=∠AED,
∴∠DEP=∠PEA+∠AED=∠AED=90°,
∴∠AED=70°,
∵∠AED+∠AEC=180°,
∴∠DEC+2∠AED=180°,
∴∠DEC=40°,
∵AD∥BC,
∴∠ADE=∠DEC=40°,
在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,
即∠EPD=50°.
【点睛】
本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键.
二十四、解答题
24.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或.
【分析】
(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;
(2)如图(见解析),先根据平行线的性质可
解析:(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或.
【分析】
(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;
(2)如图(见解析),先根据平行线的性质可得,再根据等量代换可得,然后根据平行线的判定即可得;
(3)先根据点D的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得.
【详解】
(1)由题意,补全图形如下:
,理由如下:
,
,
,
,
;
(2),理由如下:
如图,延长BA交DF于点O,
,
,
,
,
;
(3)由题意,有以下两种情况:
①如图3-1,,理由如下:
,
,
,
,
,
由对顶角相等得:,
;
②如图3-2,,理由如下:
,
,
,
,
.
【点睛】
本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键.
二十五、解答题
25.(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=.
【分析】
(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,
解析:(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=.
【分析】
(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可;
(2)根据垂直的定义、三角形内角和定理求出∠ABO、∠OAC的度数,根据“梦想三角形”的定义判断即可;
(3)根据同角的补角相等得到∠EFC=∠ADC,根据平行线的性质得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根据角平分线的定义得到∠ADE=∠CDE,求得∠B=∠BCD,根据“梦想三角形”的定义求解即可.
【详解】
解:当108°的角是另一个内角的3倍时,
最小角为180°﹣108°﹣108÷3°=36°,
当180°﹣108°=72°的角是另一个内角的3倍时,
最小角为72°÷(1+3)=18°,
因此,这个“梦想三角形”的最小内角的度数为36°或18°.
故答案为:18°或36°.
(2)△AOB、△AOC都是“梦想三角形”
证明:∵AB⊥OM,
∴∠OAB=90°,
∴∠ABO=90°﹣∠MON=30°,
∴∠OAB=3∠ABO,
∴△AOB为“梦想三角形”,
∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON,
∴∠OAC=80°﹣60°=20°,
∴∠AOB=3∠OAC,
∴△AOC是“梦想三角形”.
(3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,
∴∠EFC=∠ADC,
∴AD∥EF,
∴∠DEF=∠ADE,
∵∠DEF=∠B,
∴∠B=∠ADE,
∴DE∥BC,
∴∠CDE=∠BCD,
∵AE平分∠ADC,
∴∠ADE=∠CDE,
∴∠B=∠BCD,
∵△BCD是“梦想三角形”,
∴∠BDC=3∠B,或∠B=3∠BDC,
∵∠BDC+∠BCD+∠B=180°,
∴∠B=36°或∠B=.
【点睛】
本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键.
展开阅读全文