资源描述
2024年人教版中学七7年级下册数学期末试题含答案完整
一、选择题
1.下列四幅图中,和是同位角的是( )
A.①② B.③④ C.①②④ D.②③④
2.下列对象中不属于平移的是( )
A.在平坦雪地上滑行的滑雪运动员 B.上上下下地迎送来客的电梯
C.一棵倒映在湖中的树 D.在笔直的铁轨上飞驰而过的火车
3.平面直角坐标系中,点所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列说法中不正确的个数为( ).
①在同一平面内,两条直线的位置关系只有两种:相交和垂直.
②有且只有一条直线垂直于已知直线.
③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.
⑤过一点,有且只有一条直线与已知直线平行.
A.2个 B.3个 C.4个 D.5个
5.如图,ABCD,AD⊥AC,∠BAD=35°,则∠ACD=( )
A.35° B.45° C.55° D.70°
6.下列计算正确的是( )
A. B. C. D.
7.如图所示,长方形ABCD中,点E在CD边上,AE,BE与线段FG相交构成∠,∠,则∠1,∠2,∠,∠之间的关系是( )
A.∠1+∠2+180°=∠+∠ B.∠+∠2=∠+∠1
C.∠+∠=2(∠1+∠2) D.∠1+∠2=∠a﹣∠
8.如图,在平面直角坐标系上有点,点第一次向左跳动至,第二次向右跳动至,第三次向左跳动至,第四次向右跳动至…依照此规律跳动下去,点第124次跳动至的坐标为( )
A. B. C. D.
九、填空题
9.如果和互为相反数,那么________.
十、填空题
10.点关于轴的对称点的坐标为______.
十一、填空题
11.如图,DB是的高,AE是角平分线,,则______.
十二、填空题
12.如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有 _______个.
十三、填空题
13.如图,将ABC沿着AC边翻折得到AB1C,连接BB1交AC于点E,过点B1作B1DAC交BC延长线于点D,交BA延长线于点F,连接DA,若∠CBE=45°,BD=6cm,则ADB1的面积为_________.
十四、填空题
14.对于正数x规定,例如:,则f (2020)+f (2019)+……+f (2)+f (1)+=___________
十五、填空题
15.点关于轴的对称点的坐标是_______.
十六、填空题
16.如图,在平面直角坐标系中,轴,轴,点、、、在轴上,,,,,,把一条长为2021个单位长度且无弹性的细线(线的粗细忽略不计)的一端固定在处,并按的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标________.
十七、解答题
17.计算下列各式的值:
(1)
(2)
十八、解答题
18.求下列各式中的x:
(1); (2); (3).
十九、解答题
19.根据下列证明过程填空:已知:如图,于点,于点,.求证:.
证明:∵,(已知)
∴(______________)
∴(_____________)
∴(_____________)
又∵(已知)
∴(_________)
∴(_________)
∴(__________)
二十、解答题
20.如图,在平面直角坐标系中,DABC的顶点 C的坐标为(1,3).点A、B分别在格点上.
(1)直接写出A、B两点的坐标;
(2)若把DABC向上平移3个单位,再向右平移2个单位得DA¢B¢C¢,画出DA¢B¢C¢;
(3)若DABC内有一点 M(m,n),按照(2)的平移规律直接写出平移后点M的对应点 M¢的坐标.
二十一、解答题
21.阅读下面的文字,解答问题.
大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.
请解答:(1)若的整数部分为,小数部分为,求的值.
(2)已知:,其中是整数,且,求的值.
二十二、解答题
22.如图1,用两个边长相同的小正方形拼成一个大的正方形.
(1)如图2,若正方形纸片的面积为1,则此正方形的对角线AC的长为 dm.
(2)如图3,若正方形的面积为16,李明同学想沿这块正方形边的方向裁出一块面积为12的长方形纸片,使它的长和宽之比为3∶2,他能裁出吗?请说明理由.
二十三、解答题
23.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN.
(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,
①试判断PM与MN的位置关系,并说明理由;
②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线)
(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理)
二十四、解答题
24.已知,如图①,∠BAD=50°,点C为射线AD上一点(不与A重合),连接BC.
(1)[问题提出]如图②,AB∥CE,∠BCD=73 °,则:∠B= .
(2)[类比探究]在图①中,探究∠BAD、∠B和∠BCD之间有怎样的数量关系?并用平行线的性质说明理由.
(3)[拓展延伸]如图③,在射线BC上取一点O,过O点作直线MN使MN∥AD,BE平分∠ABC交AD于E点,OF平分∠BON交AD于F点,交AD于G点,当C点沿着射线AD方向运动时,∠FOG的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值.
二十五、解答题
25.解读基础:
(1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由;
(2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由:
应用乐园:直接运用上述两个结论解答下列各题
(3)①如图3,在中,、分别平分和,请直接写出和的关系 ;
②如图4, .
(4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,求和的度数.
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样的一对角叫做同位角进行分析即可.
【详解】
解:根据同位角的定义可知:图①②④中,∠1和∠2是同位角;图③中,∠1和∠2不是同位角;
故选C.
【点睛】
本题主要考查同位角的定义,熟记同位角的定义是解决此题的关键.
2.C
【分析】
根据平移的性质,对选项进行一一分析,利用排除法求解.
【详解】
解:A、滑雪运动员在平坦雪地上滑行,符合平移的性质,故属于平移;
B、电梯上上下下地迎送来客,符合平移的性质,故属于平移
解析:C
【分析】
根据平移的性质,对选项进行一一分析,利用排除法求解.
【详解】
解:A、滑雪运动员在平坦雪地上滑行,符合平移的性质,故属于平移;
B、电梯上上下下地迎送来客,符合平移的性质,故属于平移;
C、一棵树倒映在湖中,山与它在湖中的像成轴对称,故不属于平移;
D、火车在笔直的铁轨上飞弛而过,符合平移的性质,故属于平移;
故选:C.
【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或轴对称.
3.D
【分析】
根据点在各象限的坐标特点即可得答案.
【详解】
∵点的横坐标2>0,纵坐标-3<0,
∴点所在的象限是第四象限,
故选:D.
【点睛】
本题考查直角坐标系,解决本题的关键是记住平面直角坐标系中各个象限内点的坐标的符号:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.C
【分析】
根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.
【详解】
∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;
∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;
如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;
从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;
过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;
∴不正确的有①②④⑤四个.
故选:C.
【点睛】
本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.
5.C
【分析】
由平行线的性质可得∠ADC=∠BAD=35°,再由垂线的定义可得△ACD是直角三角形,进而根据直角三角形两锐角互余的性质即可得出∠ACD的度数.
【详解】
∵AB∥CD,∠BAD=35°,
∴∠ADC=∠BAD=35°,
∵AD⊥AC,
∴∠ADC+∠ACD=90°,
∴∠ACD=90°﹣35°=55°,
故选:C.
【点睛】
本题主要考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.
6.D
【分析】
分别根据算术平方根的定义以及立方根的定义逐一判断即可.
【详解】
解:A、,故本选项不合题意;
B、,故本选项不合题意;
C、,故本选项不合题意;
D、,故本选项符合题意;
故选:D.
【点睛】
本题主要考查算术平方根及立方根,熟练掌握求一个数的算术平方根及立方根是解题的关键.
7.A
【分析】
根据平行线的性质可得∠AFG+∠BGF=180°,再根据三角形外角的性质可得∠AFG+∠1=∠α,∠2+∠BGF=∠β,由此可得.
【详解】
解:∵在长方形中AD//BC,
∴∠AFG+∠BGF=180°,
又∵∠AFG+∠1=∠α,∠2+∠BGF=∠β,
∴.
故选:A.
【点睛】
本题考查平行线的性质,三角形外角的性质.三角形一个外角等于与它不相邻的两个内角之和,能正确识图是解题关键.
8.A
【分析】
根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.
【详解】
解:观察发现,第2次跳动至点的坐标是(2,1),
第4次跳动至点的坐标
解析:A
【分析】
根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.
【详解】
解:观察发现,第2次跳动至点的坐标是(2,1),
第4次跳动至点的坐标是(3,2),
第6次跳动至点的坐标是(4,3),
第8次跳动至点的坐标是(5,4),
…
第2n次跳动至点的坐标是(n+1,n),
∴第124次跳动至点的坐标是(63,62).
故选:A.
【点睛】
本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.
九、填空题
9.-2
【分析】
利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案.
【详解】
解:∵和|y-2|互为相反数,
∴,
∴x+1=0,y-2=0,
解得:x=-1,y=2,
∴xy
解析:-2
【分析】
利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案.
【详解】
解:∵和|y-2|互为相反数,
∴,
∴x+1=0,y-2=0,
解得:x=-1,y=2,
∴xy=-1×2=-2
故答案为:-2.
【点睛】
本题考查了绝对值和平方数的非负性.互为相反数的两个数相加等于0,和|y-2|都是非负数,所以这个数都是0.
十、填空题
10.【分析】
关于y轴对称的点,纵坐标相同,横坐标互为相反数.
【详解】
∵关于y轴对称的点,纵坐标相同,横坐标互为相反数
∴点关于y轴的对称点的坐标为.
故答案为:
【点睛】
考核知识点:轴对称与点
解析:
【分析】
关于y轴对称的点,纵坐标相同,横坐标互为相反数.
【详解】
∵关于y轴对称的点,纵坐标相同,横坐标互为相反数
∴点关于y轴的对称点的坐标为.
故答案为:
【点睛】
考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.
十一、填空题
11.【分析】
由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD与∠FAD互余,与∠BFE是对顶角,故可求得∠BFE的度数.
【详解】
∵AE是角平分线,∠BAE=26°,
∴∠FAD=∠B
解析:
【分析】
由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD与∠FAD互余,与∠BFE是对顶角,故可求得∠BFE的度数.
【详解】
∵AE是角平分线,∠BAE=26°,
∴∠FAD=∠BAE=26°,
∵DB是△ABC的高,
∴∠AFD=90°−∠FAD=90°−26°=64°,
∴∠BFE=∠AFD=64°.
故答案为64°.
【点睛】
本题考查了三角形内角和定理,三角形的角平分线、中线和高,熟练掌握三角形内角和定理是解题的关键.
十二、填空题
12.4
【分析】
根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5,可得图中与∠1互余的角有4个
【详解】
∵射线DF⊥直线c
∴∠1+∠2=90°,∠1
解析:4
【分析】
根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5,可得图中与∠1互余的角有4个
【详解】
∵射线DF⊥直线c
∴∠1+∠2=90°,∠1+∠3=90°
即与∠1互余的角有∠2,∠3
又∵a∥b
∴∠3=∠5,∠2=∠4
∴∠1互余的角有∠4,∠5
∴与∠1互余的角有4个
故答案为:4
【点睛】
本题考查了互余的定义,如果两个角的和等于(直角),就说这两个角互为余角,简称互余,即其中每一个角是另一个角的余角;本题还考查了平行线的性质定理,两直线平行,同位角相等.
十三、填空题
13.cm²
【分析】
根据翻折变换的性质可知AC垂直平分BB1,且B1D平行AC,得到AC为三角形ADB中位线,从而求解.
【详解】
解:根据翻折变换的性质可知AC垂直平分BB1,
∵B1D∥AC,
∴
解析:cm²
【分析】
根据翻折变换的性质可知AC垂直平分BB1,且B1D平行AC,得到AC为三角形ADB中位线,从而求解.
【详解】
解:根据翻折变换的性质可知AC垂直平分BB1,
∵B1D∥AC,
∴AC为三角形ADB中位线,
∴BC=CD=BD=3cm,
在Rt△BCE中,∠CBE=45°,BC=3cm,
∴CE2+BE2=BC2,
解得BE=CE=cm.
∴EB1=BE=,
∵CE为△BDB1中位线,
∴DB1=2CE=3cm,
△ADB1的高与EB1相等,
∴S△ADB1=×DB1×EB1=××3=cm²,
故答案为:cm².
【点睛】
本题主要考查了翻折变换的性质、三角形面积的求法,解题关键是能够明确AC为△ADB的中位线从而得出答案.
十四、填空题
14.5
【分析】
由已知可求,则可求.
【详解】
解:,
,
,
,
故答案为:2019.5
【点睛】
本题考查代数值求值,根据所给条件,探索出是解题的关键.
解析:5
【分析】
由已知可求,则可求.
【详解】
解:,
,
,
,
故答案为:2019.5
【点睛】
本题考查代数值求值,根据所给条件,探索出是解题的关键.
十五、填空题
15.【分析】
根据点关于轴的对称点的坐标的特征,即可写出答案.
【详解】
解:∵点关于轴的对称点为,
∴点的纵坐标与点的纵坐标相同,
点的横坐标是点的横坐标的相反数,
故点的坐标为:,
故答案为:.
解析:
【分析】
根据点关于轴的对称点的坐标的特征,即可写出答案.
【详解】
解:∵点关于轴的对称点为,
∴点的纵坐标与点的纵坐标相同,
点的横坐标是点的横坐标的相反数,
故点的坐标为:,
故答案为:.
【点睛】
本题考查了与直角坐标系相关的知识,理解点关于轴的对称点的坐标的特征(纵坐标相等,横坐标是其相反数)是解题的关键.
十六、填空题
16.【分析】
先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题.
【详解】
解:,,,,,
∴,
“凸”形的周长为20,
又∵的余数为1,
细线另一端所在位置的点在的中点处,坐标为.
故
解析:
【分析】
先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题.
【详解】
解:,,,,,
∴,
“凸”形的周长为20,
又∵的余数为1,
细线另一端所在位置的点在的中点处,坐标为.
故答案为:.
【点睛】
本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型.
十七、解答题
17.(1);(2)
【分析】
(1)先求绝对值,同时利用计算,再合并即可;
(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可.
【详解】
解:(1)
(2)
【点睛】
本题考
解析:(1);(2)
【分析】
(1)先求绝对值,同时利用计算,再合并即可;
(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可.
【详解】
解:(1)
(2)
【点睛】
本题考查的是实数的运算,考查,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键.
十八、解答题
18.(1);(2)1;(3)-1.
【分析】
(1)根据立方根的定义解方程即可;
(2)根据立方根的定义解方程即可;
(3)根据立方根的定义解方程即可.
【详解】
解:(1),
∴ ,
∴,
∴;
(2
解析:(1);(2)1;(3)-1.
【分析】
(1)根据立方根的定义解方程即可;
(2)根据立方根的定义解方程即可;
(3)根据立方根的定义解方程即可.
【详解】
解:(1),
∴ ,
∴,
∴;
(2)
∴
∴
∴;
(3),
∴,
∴,
∴.
【点睛】
本题考查了利用立方根的含义解方程,熟知立方根的定义是解决问题的关键.
十九、解答题
19.;垂直的定义;同位角相等,两直线平行;;两直线平行,同位角相等;GD;同位角相等,两直线平行;;两直线平行,内错角相等;等量代换
【分析】
结合图形,根据已知证明过程,写出相关的依据即可.
【详解】
解析:;垂直的定义;同位角相等,两直线平行;;两直线平行,同位角相等;GD;同位角相等,两直线平行;;两直线平行,内错角相等;等量代换
【分析】
结合图形,根据已知证明过程,写出相关的依据即可.
【详解】
证明:证明:∵,(已知)
∴(垂直的定义)
∴(同位角相等,两直线平行)
∴(两直线平行,同位角相等)
又∵(已知)
∴(同位角相等,两直线平行)
∴(两直线平行,内错角相等)
∴(等量代换)
【点睛】
本题考查证明过程中每一步的依据,根据推理过程明白相关知识点是解题关键.
二十、解答题
20.(1),;(2)见解析;(3).
【分析】
(1)根据原点的位置确定点的坐标即可;
(2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可;
(3)将M(m,n)向上平移3个单位,再向右平移
解析:(1),;(2)见解析;(3).
【分析】
(1)根据原点的位置确定点的坐标即可;
(2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可;
(3)将M(m,n)向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3即可得到的坐标.
【详解】
(1)根据原点的位置确定点的坐标,
则,;
(2)将三点向上平移3个单位,再向右平移2个单位得到,
,
,
在图中描出点,连接,DA¢B¢C¢即为所求.
(3)将M(m,n)向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3
.
【点睛】
本题考查了平面直角坐标系的定义,平移的作图,根据平移的方向和距离确定点的坐标是解题的关键.
二十一、解答题
21.(1)6;(2)12−
【分析】
(1)先求出的取值范围即可求出a和b的值,然后代入求值即可;
(2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论.
【详解】
解析:(1)6;(2)12−
【分析】
(1)先求出的取值范围即可求出a和b的值,然后代入求值即可;
(2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论.
【详解】
解:(1)∵ 3<<4,
∴ a=3,b=-3
∴
=+-3-
=6
(2) ∵1<<2.
又∵10+=x+y,其中x是整数,且0<y<1,
∴x=11, y=−1.
∴x−y=11−(−1)=12−
【点睛】
此题考查的是求无理数的整数部分、小数部分和实数的运算,掌握求无理数的取值范围是解决此题的关键.
二十二、解答题
22.(1);(2)不能,理由见解析
【分析】
(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长;
(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可.
【详解】
解:
解析:(1);(2)不能,理由见解析
【分析】
(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长;
(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可.
【详解】
解:(1)∵正方形纸片的面积为,
∴正方形的边长,
∴.
故答案为:.
(2)不能;
根据题意设长方形的长和宽分别为和.
∴长方形面积为:,
解得:,
∴长方形的长边为.
∵,
∴他不能裁出.
【点睛】
本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键.
二十三、解答题
23.(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.
【分析】
(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条
解析:(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.
【分析】
(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN;
②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解;
(2)分三种情况讨论,利用平行线的性质即可解决.
【详解】
解:(1)①PM⊥MN,理由见解析:
∵AB//CD,
∴∠APM=∠PMQ,
∵∠APM+∠QMN=90°,
∴∠PMQ +∠QMN=90°,
∴PM⊥MN;
②过点N作NH∥CD,
∵AB//CD,
∴AB// NH∥CD,
∴∠QMN=∠MNH,∠EPA=∠ENH,
∵PA平分∠EPM,
∴∠EPA=∠ MPA,
∵∠APM+∠QMN=90°,
∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,
∴∠MNQ +∠MNH +∠MNH=90°,
∵∠MNQ=20°,
∴∠MNH=35°,
∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,
∴∠EPB=180°-55°=125°,
∴∠EPB的度数为125°;
(2)当点M,N分别在射线QC,QF上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,
∴∠APM +∠QMN=90°;
当点M,N分别在射线QC,线段PQ上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMN=90°,∠APM=∠PMQ,
∴∠PMQ -∠QMN=90°,
∴∠APM -∠QMN=90°;
当点M,N分别在射线QD,QF上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°,
∴∠APM+90°-∠QMN=180°,
∴∠APM -∠QMN=90°;
综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°.
【点睛】
本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.
二十四、解答题
24.(1);(2),见解析;(3)不变,
【分析】
(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;
(2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系;
(3)运用
解析:(1);(2),见解析;(3)不变,
【分析】
(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;
(2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系;
(3)运用(2)的结论和平行线的性质、角平分线的性质,可求出的度数,可得结论.
【详解】
(1)因为∥,
所以,
因为∠BCD=73 °,
所以,
故答案为:
(2),
如图②,过点作∥,
则,.
因为,
所以,
(3)不变,
设,
因为平分,
所以.
由(2)的结论可知,且,
则:.
因为∥,
所以,
因为平分,
所以.
因为∥,
所以,
所以.
【点睛】
本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系.
二十五、解答题
25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .
【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;
(2)根据三角形内角和定理及对顶角相等即可得出结
解析:(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .
【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;
(2)根据三角形内角和定理及对顶角相等即可得出结论;
(3)①根据角平分线的定义及三角形内角和定理即可得出结论;
②连结BE,由(2)的结论及四边形内角和为360°即可得出结论;
(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.
【详解】
(1).理由如下:
如图1,,,,;
(2).理由如下:
在中,,在中,,,;
(3)①,,、分别平分和,,.
故答案为:.
②连结.
∵,.
故答案为:;
(4)由(1)知,,,,,,,,,,,;
.
【点睛】
本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.
展开阅读全文