资源描述
人教版小学五年级下册数学期末解答质量监测(含答案)
1.淘气和笑笑比赛折幸运星。淘气6分钟折了5个幸运星,笑笑9分钟折了7个幸运星,谁折得更快?
2.甲队6天共修路5千米,乙队每天修路千米,甲队比乙队平均每天少修路多少千米?
3.一本书有80页,小芳已经看了24页,剩下的页数占总页数的几分之几?
4.修一条长240米的公路,修了3天后,还剩下60米没有修。已经修了全长的几分之几?
5.把一些糖果平均分给8个小朋友,正好剩下一颗;平均分给9个小朋友,也正好剩下一颗。这些糖果至少有多少颗?
6.五(3)班50多名同学参加“减少污染”行动起来的志愿者活动他们平均排成8排或12排都多6名。五(3)班有几名同学?
7.小明和爸爸一起去文体广场散步,爸爸走一圈6分钟,小明走一圈8分钟。他们6:30从同一地点同向而行,什么时候在出发地点再一次相遇?这时爸爸和小明各走了多少圈?
8.用若干张长8厘米、宽6厘米的长方形纸片拼成一个正方形。
(1)这个正方形的面积最小是多少平方厘米?
(2)最少需要几张这样的长方形纸片,才能拼成一个正方形?
9.看图回答。
10.一台拖拉机耕地,上午耕了公顷,比下午少耕公顷。这一天一共耕了多少公顷?
11.赵琳家六月用了吨的水,七月比六月节约了吨,七月用水多少吨?
12.工程队要铺设一条千米长的管道,第一天铺了千米,第二天比第一天多铺了千米。两天铺完了吗?若没铺完,还剩多少千米?
13.下图是一个密封的长方体容器,长20厘米,宽10厘米,高40厘米,里面水深32厘米。如果以这个容器的前面为底放在桌上。(容器的厚度忽略不计)
(1)此时水深多少厘米?
(2)此时水与容器接触的面积是多少平方厘米?
14.图中长方体的长是5厘米,宽是3厘米,高是4厘米。把这个长方体切成两个完全相同的小长方体,一共有( )种不同的切法;怎样切表面积增加最多?请在长方体上画出这种切法;算一算,表面积最多可以增加( )平方厘米。
15.下图是一个长方体(数据均为内部测量),请仔细观察,并解答下面各题。
(1)长方体“上面”面积是( )dm2,“左面”面积是( )dm2。
(2)如果将这个长方体容器注满水,一共可以装水多少升?
(3)装满水后,将一个底面半径是1dm,高1.5dm的圆锥形物体放入水中(完全浸没),然后再拿出来,这时水面将下降多少?
16.一个教室长12米,宽8米,高3米,除去门窗面积是30平方米,若要粉刷四周墙壁和天花板,需粉刷的面积是多少平方米?如果粉刷1平方米的墙壁需要用去石灰0.2千克,一共要用石灰多少千克?
17.把一个棱长为4cm的正方体铁块,熔铸成一个长8cm,宽4cm的长方体,这个长方体的高是多少cm?
18.一个正方体玻璃容器的棱长是2分米,向容器中倒入5升水,再把一块石头完全浸没在水中,这时量得容器内水深15厘米。石头的体积是多少立方分米?
19.一个鱼缸如下图所示。(单位:厘米。)(玻璃厚度忽略不计。)如果要把鱼缸加满水,还要再注入多少升水?
20.一个底面长和宽都是3dm的长方体容器,装有11.9升水,现在将一个苹果浸没在水中,这时容器内水深1.35分米。这个苹果的体积是多少立方分米?
21.(1)以虚线为对称轴,画出图形A的轴对称图形B。
(2)把图形B先向下平移4格,再向左平移2格,得到图形C。
22.在下面方格纸上按要求画图。
(1)以虚线为对称轴,画出轴对称图形的另一半。
(2)画出把整个图形向右平移5格后的图形。
23.按要求在下面方格中画出图形。
①画出图形的另一半,使它成为一个轴对称图形。
②将三角形OAB绕点O顺时针方向旋转90°。
③将三角形OAB向左平移3格。
24.操作题。
(1)请画出图1的另一半,使它成为一个轴对称图形。
(2)请画出图2向左平移5格后的图形。
(3)图3向( )平移了( )格。
25.下图是用24个棱长2cm的小正方体粘合而成的几何体。
(1)在A、B、C三个缺口中选一处补入一个小正方体,补在( ) 处,能使这个几何体的表面积保持不变。
(2)在这三个缺口处都补入一个小正方体,这个几何体的表面积会增加还是会减少?增加(或减少)多少cm2?
26.有一个长方体形状的小型游泳池,其尺寸如图所示。
(1)这个水池的占地面积是多少平方米?
(2)长方体水池的棱长之和是多少分米?
(3)给池底和四周抹水泥,抹水泥的面积是多少平方米?
(4)给池内注入1.5米深的水,注入的水的体积是多少立方米?
(5)有一群孩子从跳台跳入水中,水面上升4cm,则这些孩子所占的体积是多少立方分米?
27.一个无水的观赏鱼缸中放着一块高为30厘米,体积为3000立方厘米的假山石.如果水管以每分7立方分米的流量向缸中注水,至少需要多长时间才能将假山石完全浸没?
28.某公司近几年生产总值情况统计图。
(1)甲公司2011~2012年的生产总值是( )万元。
(2)乙公司( )年和( )年生产总值都是200万元。
(3)请你对两个公司2013~2015年的生产产值增长状况进行描述。
(4)如果要你去这两家公司应聘,你会选择哪家公司?请说明理由。
1.淘气
【分析】
每分钟折的个数=折的总个数÷分数数,据此分别求出淘气和笑笑每分钟折的个数,比较即可。
【详解】
淘气:(个),
笑笑:(个),
因为,所以淘气折得更快。
答:淘气折得更快。
【点睛】
解析:淘气
【分析】
每分钟折的个数=折的总个数÷分数数,据此分别求出淘气和笑笑每分钟折的个数,比较即可。
【详解】
淘气:(个),
笑笑:(个),
因为,所以淘气折得更快。
答:淘气折得更快。
【点睛】
此题考查了分数与除法的关系以及异分母分数的大小比较,被除数相当于分子,除数相当于分母,认真解答即可。
2.千米
【分析】
根据工作总量÷工作时间=工作效率,先求出甲队平均每天修的长度,用乙队每天修的长度-甲队每天修的长度即可。
【详解】
-5÷6
=-
=-
=(千米)
答:甲队比乙队平均每天少修路千米
解析:千米
【分析】
根据工作总量÷工作时间=工作效率,先求出甲队平均每天修的长度,用乙队每天修的长度-甲队每天修的长度即可。
【详解】
-5÷6
=-
=-
=(千米)
答:甲队比乙队平均每天少修路千米。
【点睛】
异分母分数相加减,先通分再计算。
3.【分析】
求出剩下的页数,再用剩下的页数除以总页数,即可解答。
【详解】
(80-24)÷80
=56÷80
=
答:剩下的页数占总页数的。
【点睛】
本题考查求一个数是另一个数的几分之几。
解析:
【分析】
求出剩下的页数,再用剩下的页数除以总页数,即可解答。
【详解】
(80-24)÷80
=56÷80
=
答:剩下的页数占总页数的。
【点睛】
本题考查求一个数是另一个数的几分之几。
4.【分析】
要修240米,还有60米没修,就是修了240-60=180米,根据分数的意义,用已修的除以全长即得修好的占全长的几分之几。
【详解】
(240-60)÷240
=180÷240
=
答:
解析:
【分析】
要修240米,还有60米没修,就是修了240-60=180米,根据分数的意义,用已修的除以全长即得修好的占全长的几分之几。
【详解】
(240-60)÷240
=180÷240
=
答:已经修了全长的
【点睛】
求一个数是另一个数的几分之几,用除法。
5.73颗
【分析】
根据题意可知,糖果的总个数减去1颗是8和9的公倍数,求至少有多少颗就是求8和9的最小公倍数,再加上减去的1颗即可。
【详解】
8×9+1
=72+1
=73(颗)
答:这些糖果至少
解析:73颗
【分析】
根据题意可知,糖果的总个数减去1颗是8和9的公倍数,求至少有多少颗就是求8和9的最小公倍数,再加上减去的1颗即可。
【详解】
8×9+1
=72+1
=73(颗)
答:这些糖果至少有73颗。
【点睛】
明确糖果的总个数减去1颗是8和9的公倍数是解答本题的关键。
6.54名
【分析】
排成8排或12排都多6名,说明人数比8和12的公倍数多6,据此分析。
【详解】
8=2×2×2
12=2×2×3
2×2×2×3=24
24×2+6
=48+6
=54(名)
答:
解析:54名
【分析】
排成8排或12排都多6名,说明人数比8和12的公倍数多6,据此分析。
【详解】
8=2×2×2
12=2×2×3
2×2×2×3=24
24×2+6
=48+6
=54(名)
答:五(3)班有54名同学。
【点睛】
全部公有的质因数和各自独立的质因数,它们连乘的积就是这几个数的最小公倍数。
7.6:54;爸爸走了4圈,小明走了3圈
【分析】
求出爸爸和小明走一圈需要时间的最小公倍数,是同一地点再一次相遇需要的时间,用起点时间+经过时间=终点时间,求出再一次相遇的时刻;用需要的时间分别除以两
解析:6:54;爸爸走了4圈,小明走了3圈
【分析】
求出爸爸和小明走一圈需要时间的最小公倍数,是同一地点再一次相遇需要的时间,用起点时间+经过时间=终点时间,求出再一次相遇的时刻;用需要的时间分别除以两人走一圈需要的时间,分别求出两人走的圈数即可。
【详解】
6=2×3
8=2×2×2
2×2×2×3=24(分钟)
6:30+24分钟=6:54
24÷6=4(圈)
24÷8=3(圈)
答:6:54在出发地点再一次相遇,这时爸爸走了4圈,小明走了3圈。
【点睛】
全部公有的质因数和各自独立的质因数,它们连乘的积就是这几个数的最小公倍数。
8.(1)576平方厘米
(2)12张
【分析】
(1)由题意可知,正方形的边长是8的倍数又是6的倍数,至少是8和6的公倍数,由此求出正方形的边长最小是多少,再根据正方形的面积公式:边长×边长,把数代入
解析:(1)576平方厘米
(2)12张
【分析】
(1)由题意可知,正方形的边长是8的倍数又是6的倍数,至少是8和6的公倍数,由此求出正方形的边长最小是多少,再根据正方形的面积公式:边长×边长,把数代入即可求解。
(2)根据求出的正方形的边长进行分析:看能放几排,几列,然后相乘即可。
【详解】
(1)8=2×2×2;6=2×3
8和6的最小公倍数:2×3×2×2
=6×2×2
=12×2
=24(厘米)
24×24=576(平方厘米)
答:这个正方形的面积最小是576平方厘米。
(2)(24÷8)×(24÷6)
=3×4
=12(张)
答:至少需要12张这样的长方形纸片才能拼成一个正方形。
【点睛】
此题考查的是求两个数的最小公倍数的方法,两个数的公有质因数与每个独有质因数的连乘积是最小公倍数;数字大的可以用短除法解答。
9.dm
【分析】
根据三角形三边的性质,该等腰三角的腰应为dm,底应为dm。据此求出它的周长即可。
【详解】
(dm)
所以,这个等腰三角形的周长是dm。
【点睛】
明确一个三角形最小两个边的和大于第
解析:dm
【分析】
根据三角形三边的性质,该等腰三角的腰应为dm,底应为dm。据此求出它的周长即可。
【详解】
(dm)
所以,这个等腰三角形的周长是dm。
【点睛】
明确一个三角形最小两个边的和大于第三边是解题关键。
10.2公顷
【分析】
上午比下午少耕公顷,则下午耕公顷,再加上上午耕的,求出全天耕的面积即可。
【详解】
=2(公顷)
答:这一天一共耕了2公顷。
【点睛】
本题考查分数加法,解答本题的关键是掌握
解析:2公顷
【分析】
上午比下午少耕公顷,则下午耕公顷,再加上上午耕的,求出全天耕的面积即可。
【详解】
=2(公顷)
答:这一天一共耕了2公顷。
【点睛】
本题考查分数加法,解答本题的关键是掌握分数加减法的计算方法。
11.吨
【分析】
根据题意可知,七月比六月节约了吨,六月的用水量减去吨就等于七月的用水量。
【详解】
-=(吨)
答:七月用吨。
【点睛】
本题主要考查分数的计算,做题时需认真仔细。
解析:吨
【分析】
根据题意可知,七月比六月节约了吨,六月的用水量减去吨就等于七月的用水量。
【详解】
-=(吨)
答:七月用吨。
【点睛】
本题主要考查分数的计算,做题时需认真仔细。
12.没有铺完; 千米。
【分析】
第二天铺的长度=第一天铺的长度+千米,再把两天铺的长度相加求出它们的和,与管道的总长度比较即可;若小于管道总长度就是没有铺完,那么还剩的长度=管道总长度-已经修的长度,
解析:没有铺完; 千米。
【分析】
第二天铺的长度=第一天铺的长度+千米,再把两天铺的长度相加求出它们的和,与管道的总长度比较即可;若小于管道总长度就是没有铺完,那么还剩的长度=管道总长度-已经修的长度,据此解答。
【详解】
=
= (千米)
(千米)
答:没有铺完,还剩下 千米。
【点睛】
此题考查了异分母分数加减法的计算,计算时一般用分母的最小公倍数作公分母通分。
13.(1)8厘米
(2)1760平方厘米
【分析】
(1)根据长方体的体积公式:长×宽×高,把数代入求出水的体积,即20×10×32,由于以这个容器的前面为底放在桌面上,此时的底面积是:40×20,用水
解析:(1)8厘米
(2)1760平方厘米
【分析】
(1)根据长方体的体积公式:长×宽×高,把数代入求出水的体积,即20×10×32,由于以这个容器的前面为底放在桌面上,此时的底面积是:40×20,用水的体积除以底面积即可求出水深。
(2)水与容器接触的面积就是求长方体5个面的面积和,即根据公式:长×宽+(长×高+宽×高)×2,此时长:40厘米,宽20厘米,高是第一问求的水深,把数代入即可求解。
【详解】
(1)20×10×32÷(40×20)
=200×32÷800
=6400÷800
=8(厘米)
答:此时水深8厘米。
(2)40×20+(40×8+20×8)×2
=800+(320+160)×2
=800+480×2
=800+960
=1760(平方厘米)
答:此时水与容器接触的面积是1760平方厘米。
【点睛】
本题主要考查长方体的表面积以及体积公式,熟练掌握它的公式并灵活运用。
14.3种;切法见详解;40平方厘米
【分析】
找出长方体中四条长(或宽或高)的中点,然后依次连接,即可把该长方体切成两个相同小正方体,由此即可知道有3种不同的切法;
由于切一刀增加两个面,即沿平行于最大
解析:3种;切法见详解;40平方厘米
【分析】
找出长方体中四条长(或宽或高)的中点,然后依次连接,即可把该长方体切成两个相同小正方体,由此即可知道有3种不同的切法;
由于切一刀增加两个面,即沿平行于最大的面(5×4)切,此时增加的表面积最多,表面积增加的部分就是多出来的这两个面的面积,即5×4×2,算出结果即可。
【详解】
由分析可知,一共有3种不同的切法;
5×4×2
=20×2
=40(平方厘米)
答:一共有3种不同的切法;表面积最多可以增加40平方厘米。
【点睛】
此题考查了简单立方体的切拼问题,明确把一个长方体切成两个小长方体,增加两个面的面积。
15.(1)10;5;(2)25L;(3)0.157dm。
【分析】
(1)上面的面积=长×宽;左面面积=宽×高,据此列式计算;
(2)根据长方体体积=长×宽×高,求出容积即可;
(3)根据圆锥体积=底面
解析:(1)10;5;(2)25L;(3)0.157dm。
【分析】
(1)上面的面积=长×宽;左面面积=宽×高,据此列式计算;
(2)根据长方体体积=长×宽×高,求出容积即可;
(3)根据圆锥体积=底面积×高×,求出圆锥体积,圆锥体积÷长方体底面积即可。
【详解】
(1)5×2=10(平方分米);2×2.5=5(平方分米)
(2)5×2×2.5=25(dm3)
25dm3=25 L
答:一共可以装水25 L。
(3)×3.14×1²×1.5=1.57(dm3)
1.57÷(5×2)
=1.57÷10
=0.157(dm)
答:这时水面将下降0.157 dm。
【点睛】
关键是熟悉长方体特征,掌握长方体和圆锥体积公式。
16.186平方米;37.2千克
【分析】
首先搞清这道题是求长方体的表面积,其次这个长方体的表面由五个长方形组成,缺少下面(因为教室的地面不粉刷),用这5个面的面积和减去门窗的面积就是要粉刷的面积;已知
解析:186平方米;37.2千克
【分析】
首先搞清这道题是求长方体的表面积,其次这个长方体的表面由五个长方形组成,缺少下面(因为教室的地面不粉刷),用这5个面的面积和减去门窗的面积就是要粉刷的面积;已知如果粉刷1平方米的墙壁需要用去石灰0.2千克,用粉刷的面积乘每平方米用涂料的数量即可求解。
【详解】
12×8+12×3×2+8×3×2-30
=96+72+48-30
=216-30
=186(平方米)
(2)0.2×186=37.2(千克)
答:需粉刷的面积是186平方米,一共要用石灰37.2千克。
【点睛】
这是一道长方体表面积的实际应用,解答此题应注意在计算时要分清需要计算几个长方形面的面积,缺少的是哪一个面的面积,从而列式解答即可。
17.2厘米
【分析】
把一个正方体熔铸成一个长方体前后的体积是不变的,根据正方体的体积=棱长×棱长×棱长,求出正方体的体积也就是长方体的体积,长方体的高=长方体的体积÷长÷宽,据此解答。
【详解】
4×
解析:2厘米
【分析】
把一个正方体熔铸成一个长方体前后的体积是不变的,根据正方体的体积=棱长×棱长×棱长,求出正方体的体积也就是长方体的体积,长方体的高=长方体的体积÷长÷宽,据此解答。
【详解】
4×4×4÷8÷4
=64÷8÷4
=2(厘米)
答:这个长方体的高是2厘米。
【点睛】
抓住体积不变是解题关键。另外要学会灵活运用长方体的体积公式。
18.1立方分米
【分析】
将15厘米化成1.5分米,再根据长方体的体积公式,求出石头浸没水中后水和石头的体积和。最后,将其减去水的体积,求出石头的体积即可。
【详解】
15厘米=1.5分米,5升=5立方
解析:1立方分米
【分析】
将15厘米化成1.5分米,再根据长方体的体积公式,求出石头浸没水中后水和石头的体积和。最后,将其减去水的体积,求出石头的体积即可。
【详解】
15厘米=1.5分米,5升=5立方分米
2×2×1.5-5
=6-5
=1(立方分米)
答:石头的体积是1立方分米。
【点睛】
本题考查了长方体的体积,长方体体积=长×宽×高。
19.64升
【分析】
根据题图可知,还需要再注入高度为50-30=20厘米的水,再根据“长方体体积=长×宽×高”求出需要注入水的体积即可。
【详解】
80×40×(50-30)
=3200×20
=64
解析:64升
【分析】
根据题图可知,还需要再注入高度为50-30=20厘米的水,再根据“长方体体积=长×宽×高”求出需要注入水的体积即可。
【详解】
80×40×(50-30)
=3200×20
=64000(立方厘米);
64000立方厘米=64升;
答:如果要把鱼缸加满水,还要再注入64升水。
【点睛】
熟练掌握长方体体积的计算公式是解答本题的关键。
20.25立方分米
【分析】
利用长方体的体积公式,先求出苹果浸没在水中时,苹果和水的体积之和。再减去水的体积,求出苹果的体积。
【详解】
11.9升=11.9立方分米,
3×3×1.35-11.9
=1
解析:25立方分米
【分析】
利用长方体的体积公式,先求出苹果浸没在水中时,苹果和水的体积之和。再减去水的体积,求出苹果的体积。
【详解】
11.9升=11.9立方分米,
3×3×1.35-11.9
=12.15-11.9
=0.25(立方分米)
答:这个苹果的体积是0.25立方分米。
【点睛】
本题考查了长方体的体积,长方体的体积等于长乘宽乘高。
21.见详解
【分析】
(1)根据轴对称图形的特征,首先确定对称轴,将图形的关键点作对称轴的对称点,依次连接各个点,得到轴对称图形;
(2)根据平移的特征,把图形B的各点分别向右平移4格,再向左平移2格,
解析:见详解
【分析】
(1)根据轴对称图形的特征,首先确定对称轴,将图形的关键点作对称轴的对称点,依次连接各个点,得到轴对称图形;
(2)根据平移的特征,把图形B的各点分别向右平移4格,再向左平移2格,依次连结即可得到图形C。
【详解】
作图如下:
【点睛】
此题考查作轴对称图形、作平移后的图形,关键是确定对应点(对称点、平移后的点)的位置。
22.见详解
【分析】
(1)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的右边画出左图的关键对称点,连结即可;
(2)根据平移的特征,把整个图形的各顶点分别向右平移
解析:见详解
【分析】
(1)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的右边画出左图的关键对称点,连结即可;
(2)根据平移的特征,把整个图形的各顶点分别向右平移5格,再依次连结即可。
【详解】
作图如下:
【点睛】
求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的特征点关于这条直线对称的点,然后依次连结各对称点即可。平移作图要注意:①方向;②距离。整个平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动。
23.见详解
【分析】
①补全轴对称图形的方法:找出图形的关键点,依据对称轴画出关键点的对称点,再依据图形的形状顺次连接各点,画出最终的轴对称图形。
②作旋转一定角度后的图形步骤:根据题目要求,确定旋转中
解析:见详解
【分析】
①补全轴对称图形的方法:找出图形的关键点,依据对称轴画出关键点的对称点,再依据图形的形状顺次连接各点,画出最终的轴对称图形。
②作旋转一定角度后的图形步骤:根据题目要求,确定旋转中心、旋转方向和旋转角;分析所作图形,找出构成图形的关键点;找出关键点的对应点:按一定的方向和角度分别作出各关键点的对应点;作出新图形,顺次连接作出的各点即可。
③作平移后的图形步骤:找点-找出构成图形的关键点;定方向、距离-确定平移方向和平移距离;画线-过关键点沿平移方向画出平行线;定点-由平移的距离确定关键点平移后的对应点的位置;连点-连接对应点。
【详解】
【点睛】
决定平移后图形的位置的要素:一是平移的方向,二是平移的距离。决定旋转后图形的位置的要素:一是旋转中心或轴,二是旋转方向(顺时针或逆时针),三是旋转角度。
24.见详解
【分析】
(1)沿着对称轴,依次找出右侧图形对应左侧的点,再依次连接起来即可得出轴对称图形;
(2)图2中将图形的各个点向左移动5格得到新的点位置,再依次连接得出答案;
(3)根据平移后图形
解析:见详解
【分析】
(1)沿着对称轴,依次找出右侧图形对应左侧的点,再依次连接起来即可得出轴对称图形;
(2)图2中将图形的各个点向左移动5格得到新的点位置,再依次连接得出答案;
(3)根据平移后图形各个点的位置,数出移动格数即可得出答案。
【详解】
由题意可得:
(3)图3向下平移了6格。
【点睛】
本题主要考查的是轴对称图形及平移的图形变换,解题的关键是熟练运用图形的轴对称、平移规律,进而作出图形。
25.(1)B
(2)减少;减少24cm2
【分析】
(1)在A、B、C三个缺口中分别补入一个小正方体,对比补入前后表面积是否有改变,选出表面积保持不变的一处即可;
(2)在这三个缺口处都补入一个小正方
解析:(1)B
(2)减少;减少24cm2
【分析】
(1)在A、B、C三个缺口中分别补入一个小正方体,对比补入前后表面积是否有改变,选出表面积保持不变的一处即可;
(2)在这三个缺口处都补入一个小正方体,对比补入前后表面积的变化情况,数出相差的面,计算出相差面的面积即可。
【详解】
据分析知:(1)补在B处,能使这个几何体的表面积保持不变;
(2)在这三个缺口处都补入一个小正方体后,少了6个正方形的面,即表面积减少了;减少的面积:2×2=4(平方厘米),6×4=24(平方厘米)。
答:这个几何体的表面积会减少,减少24cm2。
【点睛】
具有一定的空间想象能力,并能理解好正方体的表面积,这是解决此题的关键。
26.(1)300平方米 (2)1480分米 (3)440平方米 (4)450立方米 (5)12000立方分米
【解析】
【分析】
求不规则物体的体积常见方法是
方法一:不规则物体体积=总
解析:(1)300平方米 (2)1480分米 (3)440平方米 (4)450立方米 (5)12000立方分米
【解析】
【分析】
求不规则物体的体积常见方法是
方法一:不规则物体体积=总体积(物体和水的)-水的体积
方法二:不规则物体体积=底面积×上升的高度
【详解】
(1)15×20=300(平方米)
(2)(20+15+2)×4=148(米)=1480(分米)
(3)20×15+(20×2+15×2)×2=300+140=440(平方米)
(4)15×20×1.5=450(立方米)
(5)4cm=0.04m,15×20×0.04=12(立方米)=12000(立方分米)
27.分钟
【详解】
7立方分米=7000立方厘米
(50×20×30-3000)÷7000= (分钟)
解析: 分钟
【详解】
7立方分米=7000立方厘米
(50×20×30-3000)÷7000= (分钟)
28.(1)50
(2)2012;2013
(3)甲公司生产产值增长逐步超过乙公司生产产值增长。
(4)甲公司,因为甲公司生产产值增长得比较快。
【分析】
(1)观察折线统计图,发现甲公司2011年的生产
解析:(1)50
(2)2012;2013
(3)甲公司生产产值增长逐步超过乙公司生产产值增长。
(4)甲公司,因为甲公司生产产值增长得比较快。
【分析】
(1)观察折线统计图,发现甲公司2011年的生产总值是0万元,2012年是50万元。据此利用加法,求出甲公司2011~2012年的生产总值;
(2)观察折线统计图,发现乙公司2012年和2013年生产总值都是200万元;
(3)根据两根折线的变化情况,总结出两个公司2013~2015年的生产产值增长状况;
(4)选择生产产值增长较快的公司,去应聘。
【详解】
(1)50+0=50(万元),所以,甲公司2011~2012年的生产总值是50万元;
(2)乙公司2012年和2013年生产总值都是200万元;
(3)2013~2015年,甲公司生产产值增长逐步超过乙公司生产产值增长;
(4)我会选择甲公司去应聘,因为甲公司生产产值增长得比较快。
【点睛】
本题考查了复式折线统计图,能从统计图中获取有用信息是解题的关键。
展开阅读全文