收藏 分销(赏)

2023年人教版中学七7年级下册数学期末学业水平卷(附答案).doc

上传人:a199****6536 文档编号:1737509 上传时间:2024-05-08 格式:DOC 页数:23 大小:553.54KB
下载 相关 举报
2023年人教版中学七7年级下册数学期末学业水平卷(附答案).doc_第1页
第1页 / 共23页
2023年人教版中学七7年级下册数学期末学业水平卷(附答案).doc_第2页
第2页 / 共23页
点击查看更多>>
资源描述
2023年人教版中学七7年级下册数学期末学业水平卷(附答案) 一、选择题 1.一个有理数的平方等于,则这个数是() A. B.或 C. D. 2.如图所示的车标,可以看作由平移得到的是( ) A. B. C. D. 3.若点在轴上,则点所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等;⑤过一点有且只有一条直线与已知直线垂直.其中真命题的个数是( ) A.1个 B.2个 C.3个 D.4个 5.如图,C为的边OA上一点,过点C作交的平分线OE于点F,作交BO的延长线于点H,若,现有以下结论:①;②;③;④.结论正确的个数是( ) A.1个 B.2个 C.3个 D.4个 6.下列说法错误的是( ) A.的平方根是 B.的值是 C.的立方根是 D.的值是 7.如图,,交于点,平分,,则的度数为( ). A.60° B.55° C.50° D.45° 8.如图,点,点向上平移1个单位,再向右平移2个单位,得到点;点向上平移2个单位,再向右平移4个单位,得到点;点向上平移4个单位,再向右平移8个单位,得到点,…,按这个规律平移得到点,则点的横坐标为( ) A. B. C. D. 九、填空题 9.25的算术平方根是  _______  . 十、填空题 10.已知点P(3,﹣1)关于y轴的对称点Q的坐标是_____________. 十一、填空题 11.在△ABC中,AD为高线,AE为角平分线,当∠B=40º,∠ACD=60º,∠EAD的度数为_________. 十二、填空题 12.如图,AD是∠EAC的平分线,AD∥BC,∠B=40°,则∠DAC的度数为____. 十三、填空题 13.如图, 把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M 、N的位置上,若∠EFG=54°,则∠EGB=_______. 十四、填空题 14.请阅读下列材料,现在规定一种新的运算:,例如:.按照这种计算的规定,当,x的值为___. 十五、填空题 15.点是第四象限内一点,若点到两坐标轴的距离相等,则点的坐标为__________. 十六、填空题 16.育红中学八五班的数学社团在做如下的探究活动:在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向上、向右、向下、向右的方向依次移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A1,第2次移动到点A2…第n次移动到点An,则△OA2A2021的面积是 __________________. 十七、解答题 17.(1)计算 (2)计算: 十八、解答题 18.求下列各式中的的值. (1); (2). 十九、解答题 19.如图.已知∠1=∠2,∠C=∠D,求证:∠A=∠F. (1)请把下面证明过程中序号对应的空白内容补充完整. 证明:∴∠1=∠2(已知) 又∵∠1=∠DMN( ) ∵∠2=∠DMN(等量代换) ∴DB∥EC( ) ∴∠DBC+∠C=180°( ). ∵∠C=∠D(已知), ∴∠DBC+( )=180°(等量代换) ∴DF∥AC( ) ∴∠A=∠F( ) (2)在(1)的基础上,小明进一步探究得到∠DBC=∠DEC,请帮他写出推理过程. 二十、解答题 20.在平面直角坐标系中,已知点,点(其中为常数,且),则称是点的“系置换点”.例如:点的“3系置换点”的坐标为,即. (1)点(2,0)的“2系置换点”的坐标为________; (2)若点的“3系置换点”的坐标是(-4,11),求点的坐标. (3)若点(其中),点的“系置换点”为点,且,求的值; 二十一、解答题 21.实数在数轴上的对应点的位置如图所示,. (1)求的值; (2)已知的小数部分是,的小数部分是,求的平方根. 二十二、解答题 22.(1)小丽计划在母亲节那天送份礼物妈妈,特设计一个表面积为12dm2的正方体纸盒,则这个正方体的棱长是   . (2)为了增加小区的绿化面积,幸福公园准备修建一个面积121πm2的草坪,草坪周围用篱笆围绕.现从对称美的角度考虑有甲,乙两种方案,甲方案:建成正方形;乙方案:建成圆形的.如果从节省篱笆费用的角度考虑,你会选择哪种方案?请说明理由; (3)在(2)的方案中,审批时发现修如此大的草坪,目的是亲近自然,若按上方案就没达到目的,因此建议用如图的设计方案:正方形里修三条小路,三条小路的宽度是一样,这样草坪的实际面积就减少了21πm2,请你根据此方案求出各小路的宽度(π取整数). 二十三、解答题 23.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上. (1)根据图1填空:∠1=   °,∠2=   °; (2)现把三角板绕B点逆时针旋转n°. ①如图2,当n=25°,且点C恰好落在DG边上时,求∠1、∠2的度数; ②当0°<n<180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由. 二十四、解答题 24.如图1,,在、内有一条折线. (1)求证:; (2)在图2中,画的平分线与的平分线,两条角平分线交于点,请你补全图形,试探索与之间的关系,并证明你的结论; (3)在(2)的条件下,已知和均为钝角,点在直线、之间,且满足,,(其中为常数且),直接写出与的数量关系. 二十五、解答题 25.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数. 小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°. 问题迁移: (1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由; (2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系. 【参考答案】 一、选择题 1.B 解析:B 【分析】 根据一个数a,如果,那么a就叫做b的平方根求解即可. 【详解】 解:∵, ∴36的平方根为6或-6, 故选B. 【点睛】 本题主要考查了平方根,解题的关键在于能够熟练掌握平方根的定义. 2.B 【分析】 根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解. 【详解】 解:A、不能经过平移得到的,故不符合题意; B、可以经过平 解析:B 【分析】 根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解. 【详解】 解:A、不能经过平移得到的,故不符合题意; B、可以经过平移得到的,故符合题意; C、不能经过平移得到的,故不符合题意; D、不能经过平移得到的,故不符合题意; 故选B. 【点睛】 本题主要考查了图形的平移,解题的关键在于能够熟练掌握图形平移的概念. 3.D 【分析】 根据点在轴上,求得,从而求得点的坐标,进而判断所在的象限. 【详解】 在轴上, , , 在第四象限, 故选D. 【点睛】 本题考查了直角坐标系中坐标和象限的知识;解题的关键是熟练掌握直角坐标系中坐标和象限的性质,从而完成求解. 4.B 【分析】 根据几何初步知识对命题逐个判断即可. 【详解】 解:①对顶角相等,为真命题; ②内错角相等,只有两直线平行时,内错角才相等,此为假命题; ③平行于同一条直线的两条直线互相平行,为真命题; ④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或者互补,此为假命题; ⑤过直线外一点有且只有一条直线与已知直线垂直,为假命题; ①③命题正确. 故选:B. 【点睛】 本题主要考查了命题的判定,熟练掌握平行线、对顶角等几何初步知识是解答本题的关键. 5.D 【分析】 根据平行线的性质可得,结合角平分线的定义可判断①;再由平角的定义可判断②;由平行线的性质可判断③;由余角及补角的定义可判断④. 【详解】 解:,, , 平分, ,故①正确; , , ,故②正确; ,, ,故③正确; ,, ,故④正确. 正确为①②③④, 故选:D. 【点睛】 本题主要考查平行线的性质,角平分线的定义,垂直的定义,灵活运用平行线的性质是解题的关键. 6.B 【分析】 根据算术平方根与平方根、立方根的性质逐项判断即可得. 【详解】 A、的平方根是,此项说法正确; B、的值是4,此项说法错误; C、的立方根是,此项说法正确; D、的值是,此项说法正确; 故选:B. 【点睛】 本题考查了算术平方根与平方根、立方根的性质,熟练掌握算术平方根与平方根、立方根的性质是解题关键. 7.C 【分析】 根据两直线平行的性质定理,进行角的转换,再根据平角求得,进而求得. 【详解】 , , 又∵ , 平分, , 故选:C. 【点睛】 本题主要考查的是平行线的性质,角平分线的定义等知识点,根据条件数形结合是解题切入点. 8.A 【分析】 根据平移方式先求得的坐标,找到规律求得的横坐标,进而求得的横坐标. 【详解】 点的横坐标为, 点的横坐为标, 点的横坐标为, 点的横坐标为, … 按这个规律平移得到点的横坐标为, ∴点 解析:A 【分析】 根据平移方式先求得的坐标,找到规律求得的横坐标,进而求得的横坐标. 【详解】 点的横坐标为, 点的横坐为标, 点的横坐标为, 点的横坐标为, … 按这个规律平移得到点的横坐标为, ∴点的横坐标为, 故选A. 【点睛】 本题考查了点的平移,坐标规律,找到规律是解题的关键. 九、填空题 9.5 【详解】 试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根. ∵52=25, ∴25的算术平方根是5. 考点:算术平方根. 解析:5 【详解】 试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根. ∵52=25, ∴25的算术平方根是5. 考点:算术平方根. 十、填空题 10.(-3,-1) 【分析】 根据关于y轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答. 【详解】 解:∵点Q与点P(3,﹣1)关于y轴对称, ∴Q(-3,-1). 故答案为(-3,-1). 解析:(-3,-1) 【分析】 根据关于y轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答. 【详解】 解:∵点Q与点P(3,﹣1)关于y轴对称, ∴Q(-3,-1). 故答案为(-3,-1). 【点睛】 本题主要考查关于对称轴对称的点的坐标特征,解此题的关键在于熟练掌握其知识点. 十一、填空题 11.10°或40°; 【分析】 首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即 解析:10°或40°; 【分析】 首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即可求解. 【详解】 解:当高AD在△ABC的内部时. ∵∠B=40°,∠C=60°, ∴∠BAC=180°-40°-60°=80°, ∵AE平分∠BAC, ∴∠BAE=∠BAC=40°, ∵AD⊥BC, ∴∠BDA=90°, ∴∠BAD=90°-∠B=50°, ∴∠EAD=∠BAD-∠BAE=50°-40°=10°. 当高AD在△ABC的外部时. 同法可得∠EAD=10°+30°=40° 故答案为10°或40°. 【点睛】 此题考查三角形内角和定理,角平分线的定义,三角形的外角性质,解题关键在于求出∠BAE的度数 十二、填空题 12.40° 【分析】 根据平行线的性质可得∠EAD=∠B,根据角平分线的定义可得∠DAC=∠EAD,即可得答案. 【详解】 ∵AD∥BC,∠B=40°, ∴∠EAD=∠B=40°, ∵AD是∠EAC的平 解析:40° 【分析】 根据平行线的性质可得∠EAD=∠B,根据角平分线的定义可得∠DAC=∠EAD,即可得答案. 【详解】 ∵AD∥BC,∠B=40°, ∴∠EAD=∠B=40°, ∵AD是∠EAC的平分线, ∴∠DAC=∠EAD=40°, 故答案为:40° 【点睛】 本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键. 十三、填空题 13.108° 【分析】 由折叠的性质可得:∠DEF=∠GEF,根据平行线的性质:两直线平行,内错角相等可得:∠DEF=∠EFG=54°,从而得到∠GEF=54°,根据平角的定义即可求得∠1,再由平行线的 解析:108° 【分析】 由折叠的性质可得:∠DEF=∠GEF,根据平行线的性质:两直线平行,内错角相等可得:∠DEF=∠EFG=54°,从而得到∠GEF=54°,根据平角的定义即可求得∠1,再由平行线的性质求得∠EGB. 【详解】 解:∵AD∥BC,∠EFG=54°, ∴∠DEF=∠EFG=54°,∠1+∠2=180°, 由折叠的性质可得:∠GEF=∠DEF=54°, ∴∠1=180°-∠GEF-∠DEF=180°-54°-54°=72°, ∴∠EGB=180°-∠1=108°. 故答案为:108°. 【点睛】 此题主要考查折叠的性质,平行线的性质和平角的定义,解决问题的关键是根据折叠的方法找准对应角,求出∠GEF的度数. 十四、填空题 14.【分析】 根据题中的新定义化简所求式子,计算即可求出的值. 【详解】 解:根据题中的新定义得:, 移项合并得:, 解得:, 故答案是:. 【点睛】 此题考查了解一元一次方程,解题的关键是掌握其步骤 解析: 【分析】 根据题中的新定义化简所求式子,计算即可求出的值. 【详解】 解:根据题中的新定义得:, 移项合并得:, 解得:, 故答案是:. 【点睛】 此题考查了解一元一次方程,解题的关键是掌握其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解. 十五、填空题 15.【分析】 根据点是第四象限内一点且到两坐标轴距离相等,点M的横坐标与纵坐标互为相反数列方程求出a的值,再求解即可. 【详解】 ∵点是第四象限内一点且到两坐标轴距离相等, ∴点M的横坐标与纵坐标互为 解析: 【分析】 根据点是第四象限内一点且到两坐标轴距离相等,点M的横坐标与纵坐标互为相反数列方程求出a的值,再求解即可. 【详解】 ∵点是第四象限内一点且到两坐标轴距离相等, ∴点M的横坐标与纵坐标互为相反数 ∴ 解得, ∴M点坐标为(4,-4). 故答案为(4,-4) 【点睛】 本题考查了点的坐标,理解点是第四象限内一点且到两坐标轴距离相等,则点M的横坐标与纵坐标互为相反数是解题的关键. 十六、填空题 16.【分析】 由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题. 【详解】 解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环 解析: 【分析】 由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题. 【详解】 解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环,横坐标对应一个循环增加2 ∵2021÷4=505…1, ∴A2021与A1是对应点,A2020与A0是对应点 ∴OA2020=505×2=1010,A1A2021=1010 ∴A2A2021=1010-1=1009 则△OA2A2019的面积是×1×1009=, 故答案为:. 【点睛】 本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得. 十七、解答题 17.(1);(2) 【分析】 (1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可; (2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可. 【详解】 解 解析:(1);(2) 【分析】 (1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可; (2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可. 【详解】 解:(1) ; (2) . 【点睛】 本题主要考查了实数的运算,解题的关键是熟练掌握算术平方根、立方根、平方的定义,绝对值的性质及实数运算法则. 十八、解答题 18.(1)或;(2). 【分析】 (1)两边开平方即可得出两个一元一次方程,求出方程的解即可; (2)先整理变形为(x﹣2)3=8,开立方根得出x﹣2=2,求出即可. 【详解】 解:(1), , , 或 解析:(1)或;(2). 【分析】 (1)两边开平方即可得出两个一元一次方程,求出方程的解即可; (2)先整理变形为(x﹣2)3=8,开立方根得出x﹣2=2,求出即可. 【详解】 解:(1), , , 或; (2), , , , . 【点睛】 本题是根据平方根和立方根的定义解方程,将方程系数化为1变形为:x2=a(a≥0)或x3=b的形式,再根据定义开平方或开立方,注意开平方时,有两个解. 十九、解答题 19.(1)见解析;(2)见解析 【分析】 (1)由对顶角相等及等量代换得到∠2=∠DMN,由此判定DB∥EC,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF∥AC,再根据平行线的性质即 解析:(1)见解析;(2)见解析 【分析】 (1)由对顶角相等及等量代换得到∠2=∠DMN,由此判定DB∥EC,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF∥AC,再根据平行线的性质即可得解; (2)由平行线的性质及等量代换即可得解. 【详解】 解:(1)证明:∵∠1=∠2(已知), 又∵∠1=∠DMN(对顶角相等), ∴∠2=∠DMN(等量代换), ∴DB∥EC(同位角相等,两直线平行 ), ∴∠DBC+∠C=180°( 两直线平行,同旁内角互补), ∵∠C=∠D(已知), ∵∠DBC+(∠D)=180°(等量代换), ∴DF∥AC( 同旁内角互补,两直线平行), ∴∠A=∠F(两直线平行,内错角相等 ). (2)∵DB∥EC, ∴∠DBC+∠C=180°,∠DEC+∠D=180°, ∵∠C=∠D, ∴∠DBC=∠DEC. 【点睛】 此题考查了平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键. 二十、解答题 20.(1);(2);(3). 【分析】 (1)根据题中新定义直接将m的值代入即可得出答案; (2)根据题中新定义列出关于、的二元一次方程组求解即可得出答案; (3)根据题中新定义可得出点B的坐标,再根据 解析:(1);(2);(3). 【分析】 (1)根据题中新定义直接将m的值代入即可得出答案; (2)根据题中新定义列出关于、的二元一次方程组求解即可得出答案; (3)根据题中新定义可得出点B的坐标,再根据列方程求解即可得出答案. 【详解】 解:(1)点(2,0)的“2系置换点”的坐标为,即; (2)由题意得: 解得: 点A的坐标为:; (3) 点为 即点B坐标为 , 为常数,且 . 【点睛】 本题考查了二元一次方程组的解法、绝对值方程,理解“系置换点”的定义并能运用是本题的关键. 二十一、解答题 21.(1);(2) 【分析】 (1)根据A点在数轴上的位置,可以知道2<a<3,根据a的范围去绝对值化简即可; (2)先求出b+2,得到它的整数部分,用b+2减去整数部分就是小数部分,从而求出m;同理可 解析:(1);(2) 【分析】 (1)根据A点在数轴上的位置,可以知道2<a<3,根据a的范围去绝对值化简即可; (2)先求出b+2,得到它的整数部分,用b+2减去整数部分就是小数部分,从而求出m;同理可求出n.然后求出2m+2n+1,再求平方根. 【详解】 解:(1)由图知:, ,, ; (2), 整数部分是3, ; 的整数部分是6, , , 的平方根为. 【点睛】 本题主要考查了无理数的估算,考核学生的运算能力,解题时注意一个正数的平方根有两个. 二十二、解答题 22.(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为 【分析】 (1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可; (2)根据正方形的周 解析:(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为 【分析】 (1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可; (2)根据正方形的周长公式以及圆形的周长公式即可求出答案; (3)根据图形的平移求解. 【详解】 解:(1)∵正方体有6个面且每个面都相等, ∴正方体的一个面的面积=2 dm2. ∴正方形的棱长=dm; 故答案为: dm ; (2)甲方案:设正方形的边长为xm,则x2 =121 ∴x =11 ∴正方形的周长为:4x=44m 乙方案: 设圆的半径rm为,则r2==121 ∴r =11 ∴圆的周长为:2= 22m ∴ 442222(2- ∵ 4> ∴ 2 ∴ ∴正方形的周长比圆的周长大 故从节省篱笆费用的角度考虑,选择乙方案建成圆形; (3)依题意可进行如图所示的平移,设小路的宽度为ym ,则 (11 –y)2=12121 ∴11 –y =10 ∴ y= ∵ 取整数 ∴ y = 答:根据此方案求出小路的宽度为; 【点睛】 本题主要考查的是算术平方根的定义,熟练掌握正方形的性质以及平移的性质是解题的关键; 二十三、解答题 23.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析 【分析】 (1)根据邻补角的定义和平行线的性质解答; (2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相 解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析 【分析】 (1)根据邻补角的定义和平行线的性质解答; (2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2; ②结合图形,分AB、BC、AC三条边与直尺垂直讨论求解. 【详解】 解:(1)∠1=180°-60°=120°, ∠2=90°; 故答案为:120,90; (2)①如图2, ∵∠ABC=60°, ∴∠ABE=180°-60°-n°=120°-n°, ∵DG∥EF, ∴∠1=∠ABE=120°-n°, ∠BCG=180°-∠CBF=180°-n°, ∵∠ACB+∠BCG+∠2=360°, ∴∠2=360°-∠ACB-∠BCG =360°-90°-(180°-n°) =90°+n°; ②当n=30°时,∵∠ABC=60°, ∴∠ABF=30°+60°=90°, AB⊥DG(EF); 当n=90°时, ∠C=∠CBF=90°, ∴BC⊥DG(EF),AC⊥DE(GF); 当n=120°时, ∴AB⊥DE(GF). 【点睛】 本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键. 二十四、解答题 24.(1)见解析;(2);见解析;(3) 【分析】 (1)过点作,根据平行线性质可得; (2)由(1)结论可得:,,再根据角平分线性质可得; (3)由(2)结论可得:. 【详解】 (1)证明:如图1,过 解析:(1)见解析;(2);见解析;(3) 【分析】 (1)过点作,根据平行线性质可得; (2)由(1)结论可得:,,再根据角平分线性质可得; (3)由(2)结论可得:. 【详解】 (1)证明:如图1,过点作, ∵, ∴, ∴,, 又∵, ∴; (2)如图2, 由(1)可得:,, ∵的平分线与的平分线相交于点, ∴ , ∴; (3)由(2)可得:,, ∵,, ∴ , ∴; 【点睛】 考核知识点:平行线性质和判定的综合运用.熟练运用平行线性质和判定是关键. 二十五、解答题 25.(1),理由见解析; (2)当点P在B、O两点之间时,; 当点P在射线AM上时,. 【分析】 (1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C 解析:(1),理由见解析; (2)当点P在B、O两点之间时,; 当点P在射线AM上时,. 【分析】 (1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案; (2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论. 【详解】 解:(1)∠CPD=∠α+∠β,理由如下: 如图,过P作PE∥AD交CD于E. ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠DPE+∠CPE=∠α+∠β. (2)当点P在A、M两点之间时,∠CPD=∠β-∠α. 理由:如图,过P作PE∥AD交CD于E. ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠CPE-∠DPE=∠β-∠α; 当点P在B、O两点之间时,∠CPD=∠α-∠β. 理由:如图,过P作PE∥AD交CD于E. ∵AD∥BC, ∴AD∥PE∥BC, ∴∠α=∠DPE,∠β=∠CPE, ∴∠CPD=∠DPE-∠CPE=∠α-∠β. 【点睛】 本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服