收藏 分销(赏)

人教版八年级数学上册压轴题强化质量检测试题含解析(一).doc

上传人:精**** 文档编号:1737497 上传时间:2024-05-08 格式:DOC 页数:22 大小:1.16MB
下载 相关 举报
人教版八年级数学上册压轴题强化质量检测试题含解析(一).doc_第1页
第1页 / 共22页
人教版八年级数学上册压轴题强化质量检测试题含解析(一).doc_第2页
第2页 / 共22页
人教版八年级数学上册压轴题强化质量检测试题含解析(一).doc_第3页
第3页 / 共22页
人教版八年级数学上册压轴题强化质量检测试题含解析(一).doc_第4页
第4页 / 共22页
人教版八年级数学上册压轴题强化质量检测试题含解析(一).doc_第5页
第5页 / 共22页
点击查看更多>>
资源描述

1、人教版八年级数学上册压轴题强化质量检测试题含解析(一)1如图,是等边三角形,点分别是射线、射线上的动点,点D从点A出发沿着射线移动,点E从点B出发沿着射线移动,点同时出发并且移动速度相同,连接(1)如图,当点D移动到线段的中点时,与的长度关系是:_(2)如图,当点D在线段上移动但不是中点时,探究与之间的数量关系,并证明你的结论(3)如图,当点D移动到线段的延长线上,并且时,求的度数2在平面直角坐标系中,点在第一象限,(1)如图,求点的坐标(2)如图,作的角平分线,交于点,过点作于点,求证:(3)若点在第二象限,且为等腰直角三角形,请直接写出所有满足条件的点的坐标3阅读下列材料,完成相应任务数学

2、活动课上,老师提出了如下问题:如图1,已知中,是边上的中线求证:智慧小组的证法如下:证明:如图2,延长至,使,是边上的中线在和中(依据一)在中,(依据二)任务一:上述证明过程中的“依据1”和“依据2”分别是指:依据1:_;依据2:_归纳总结:上述方法是通过延长中线,使,构造了一对全等三角形,将,转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”“倍长中线法”多用于构造全等三角形和证明边之间的关系任务二:如图3,则的取值范围是_;任务三:如图4,在图3的基础上,分别以和为边作等腰直角三角形,在中,;中,连接试探究与的数量关系,并说明理由4已知,(1)若,作,点在内如图1,延长交于点,若

3、,则的度数为 ;如图2,垂直平分,点在上,求的值;(2)如图3,若,点在边上,点在边上,连接,求的度数5如图1,在平面直角坐标系中, ,动点从原点出发沿轴正方向以的速度运动,动点也同时从原点出发在轴上以的速度运动,且满足关系式,连接,设运动的时间为秒.(1)求的值;(2)当为何值时,(3)如图2,在第一象限存在点,使,求.6如图,在平面直角坐标系中,A(a,0),B(0,b),且|a+4|+b286+160(1)求a,b的值;(2)如图1,c为y轴负半轴上一点,连CA,过点C作CDCA,使CDCA,连BD求证:CBD45;(3)如图2,若有一等腰RtBMN,BMN90,连AN,取AN中点P,连

4、PM、PO试探究PM和PO的关系7以点为顶点作等腰,等腰,其中,如图1所示放置,使得一直角边重合,连接、(1)试判断、的数量关系,并说明理由;(2)延长交于点试求的度数;(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由8如图,ABC是等边三角形,点D、E分别是射线AB、射线CB上的动点,点D从点A出发沿射线AB移动,点E从点B出发沿BG移动,点D、点E同时出发并且运动速度相同连接CD、DE(1)如图,当点D移动到线段AB的中点时,求证:DE=DC(2)如图,当点D在线段AB上移动但不是中点时,试探索DE与DC之间的数量关系,并说明理由(3)如图,当点D移动到

5、线段AB的延长线上,并且EDDC时,求DEC度数【参考答案】2(1)(2),证明见详解(3)【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证;(2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可解析:(1)(2),证明见详解(3)【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证;(2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可知为等边三角形,再利用边角边即可证明,最后根据全等三角形的性质即可证明;(3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,如图(见详解),用同样的方法证明

6、,再根据EDDC,证出为等腰直角三角形,即可求出DEC的度数(1)解:,证明过程如下:由题意可知, D为AB的中点,为等边三角形,(2)解:,理由如下:在射线AB上截取,连接EF,如图所示,为等边三角形,为等边三角形,由题意知,即,在和中,DE与DC之间的数量关系是(3)如图,在射线CB上截取,连接DF,如图所示,为等边三角形,为等边三角形,由题意知,即,在和中,EDDC,为等腰直角三角形,【点睛】本题主要考查了等腰三角形,等边三角形,以及全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键3(1)C;(2)见解析;(3)或或【分析】(1)作垂足为,证明,求出CM和O

7、M的长,即可得到点C坐标;(2)延长相交于点,先证明,得BD=CF,再证明,得CE=EF,即可证明结论;(3)解析:(1)C;(2)见解析;(3)或或【分析】(1)作垂足为,证明,求出CM和OM的长,即可得到点C坐标;(2)延长相交于点,先证明,得BD=CF,再证明,得CE=EF,即可证明结论;(3)分情况讨论,画出对应的等腰直角三角形的图象,做辅助线构造全等三角形,求出点P坐标【详解】解:如图中,作垂足为,在和中,点坐标;如图,延长相交于点,在和中,在和中,;(3)如图,过点P作轴于点D,在和中,;如图,过点P作轴于点D,在和中,;如图,过点P作轴于点E,过点A作于点D,在和中,设,解得,;

8、综上:点P的坐标是或或【点睛】本题考查坐标和几何综合题,解题的关键是掌握作辅助线构造全等三角形的方法,利用全等三角形的性质求解点坐标,掌握数形结合的思想4任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析【分析】任务一:依据1:根据全等的判解析:任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析【分析】任务一:依据1:根据全等的判定方法判断即可;依据2:根据三角形三边关系判断;任务

9、二:可根据任务一的方法直接证明即可;任务三:根据任务一的方法,延长中线构造全等三角形证明线段关系即可【详解】解:任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边任务二:任务三:EF=2AD理由如下:如图延长AD至G,使DG=AD,AD是BC边上的中线BD=CD在ABD和CGD中ABDCGDAB=CG,ABD=GCD 又AB=AEAE=CG在ABC中,ABC+BAC+ACB=180,GCD+BAC+ACB=180又BAE=90,CAF=90EAF+BAC=360-(BAE+CAF)=180EAF=GCD在EAF和GCA中EAF

10、GCA EF=AGEF=2AD【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,倍长中线法,构造全等三角形是解本题的关键5(1)15;(2)【分析】(1)根据等腰直角三角形的性质,连接,得,所对的直角边是斜边的一半,可得,所以可得,和是等腰三角形,由外角性质计算可得;构造“一线三垂直”模型,证解析:(1)15;(2)【分析】(1)根据等腰直角三角形的性质,连接,得,所对的直角边是斜边的一半,可得,所以可得,和是等腰三角形,由外角性质计算可得;构造“一线三垂直”模型,证明三角形,利用面积比等于等高的三角形的底边的比,结合已知条件即可解得(2)构造等边,通过证明,等边代换,得出等腰三角

11、形,代入角度计算即得【详解】(1)连接,在,因为,故答案为:过作交延长线于,连接垂直平分,故答案为:;(2)以AB向下构造等边,连接DK,延长AD,BK交于点T,等边中,在和中,等边三角形三线合一可知,BD是边AK的垂直平分线,故答案为: 【点睛】考查了等腰直角三角形的性质,外角的性质,等腰三角形的判定和性质,构造等边三角形的方法证明全等,全等三角形的性质应用很关键,熟记几何图形的性质和判定是解决图形问题的重要方法依据6(1);(2);(3)【分析】(1)把满足的关系式转化为非负数和的形式即可解答;(2)画出图形,动点运动方向有两种情况,分情况根据列方程解答即可;【详解】解:(1)(解析:(1

12、);(2);(3)【分析】(1)把满足的关系式转化为非负数和的形式即可解答;(2)画出图形,动点运动方向有两种情况,分情况根据列方程解答即可;【详解】解:(1)(2)当动点沿轴正方向运动时,如解图-2-1:当动点沿轴负方向运动时,如解图-2-2:(3)过作,连在与 ,在与中 ,是等边三角形,又【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,添加恰当辅助线构造三角形是本题的关键7(1)a4,b4;(2)见解析;(3)MPOP,MPOP,理由见解析【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数

13、和平方数的非负性即可解析:(1)a4,b4;(2)见解析;(3)MPOP,MPOP,理由见解析【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可;(2)如图1(见解析),作于E易证,由三角形全等的性质得,再证明是等腰直角三角形即可;(3)如图2(见解析),延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C证出和,再利用全等三角形的性质证明是等腰直角三角形即可.【详解】(1)由绝对值的非负性和平方数的非负性得:解得:;(2)如图1,作于E是等腰直角三角形,;(3)如图2,延长MP至Q,使得,连接AQ,OQ,OM,延长MN

14、交AO于C在四边形MCOB中,是等腰直角三角形是等腰直角三角形.【点睛】本题考查了绝对值的非负数和平方数的非负性、三角形全等的判定定理与性质、等腰直角三角形的判定与性质,熟练掌握这些定理与性质是解题关键.8(1)BD=CE,理由见解析;(2)90;(3)成立,理由见解析.【分析】(1)根据等腰直角三角形的性质得到AB=AC,BAD=EAC=90,AD=AE,利用“SAS”可证明ADB解析:(1)BD=CE,理由见解析;(2)90;(3)成立,理由见解析.【分析】(1)根据等腰直角三角形的性质得到AB=AC,BAD=EAC=90,AD=AE,利用“SAS”可证明ADBAEC,则BD=CE;(2)

15、由ADBAEC得到ACE=DBA,利用三角形内角和定理可得到BFC=180-ACE-CDF=180-DBA-BDA=DAB=90;(3)与(1)一样可证明ADBAEC,得到BD=CE,ACE=DBA,利用三角形内角和定理得到BFC=DAB=90【详解】(1)ABC、ADE是等腰直角三角形,AB=AC,BAD=EAC=90,AD=AE,在ADB和AEC中,ADBAEC(SAS),BD=CE;(2)ADBAEC,ACE=ABD,而在CDF中,BFC=180-ACE-CDF,又CDF=BDA,BFC=180-DBA-BDA=DAB=90;(3)BD=CE成立,且两线段所在直线互相垂直,即BFC=90

16、理由如下:ABC、ADE是等腰直角三角形,AB=AC,AD=AE,BAC=EAD=90,BAC+CAD=EAD+CAD,BAD=CAE,在ADB和AEC中,ADBAEC(SAS),BD=CE,ACE=DBA,BFC=DAB=90【点睛】本题考查全等三角形的判定与性质.判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,熟知判定方法并根据题目条件选择合适的方法进行解答9(1)见详解;(2)DE=DC,理由见详解;(3)DEC=45【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证(2)猜测,寻找条件证明即可.最常用解析:(1)见详解;(2)DE=D

17、C,理由见详解;(3)DEC=45【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证(2)猜测,寻找条件证明即可.最常用的是证明两个三角形全等,但图中给出的三角形中并未出现全等三角形,所以添加辅助线:在射线AB上截取,这样只要证明即可.利用等边三角形的性质及可知为等边三角形,这样通过两个等边三角形即可证明.(3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,用同样的方法证明,又因为EDDC,所以为等腰之间三角形,则DEC度数可求.【详解】由题意可知 D为AB的中点为等边三角形,(2)理由如下:在射线AB上截取,连接EF为等边三角形为等边三角形由题意知即在和中,(3)如图,在射线CB上截取,连接DF为等边三角形为等边三角形由题意知即在和中,EDDC为等腰直角三角形【点睛】本题主要考查了等腰三角形,等边三角形,全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服