资源描述
人教版八年级数学上册压轴题强化质量检测试题含解析(一)
1.如图,是等边三角形,点分别是射线、射线上的动点,点D从点A出发沿着射线移动,点E从点B出发沿着射线移动,点同时出发并且移动速度相同,连接.
(1)如图①,当点D移动到线段的中点时,与的长度关系是:_______.
(2)如图②,当点D在线段上移动但不是中点时,探究与之间的数量关系,并证明你的结论.
(3)如图③,当点D移动到线段的延长线上,并且时,求的度数.
2.在平面直角坐标系中,,点在第一象限,,
(1)如图,求点的坐标.
(2)如图,作的角平分线,交于点,过点作于点,求证:
(3)若点在第二象限,且为等腰直角三角形,请直接写出所有满足条件的点的坐标.
3.阅读下列材料,完成相应任务.
数学活动课上,老师提出了如下问题:
如图1,已知中,是边上的中线.
求证:.
智慧小组的证法如下:
证明:如图2,延长至,使,
∵是边上的中线∴
在和中
∴(依据一)∴
在中,(依据二)
∴.
任务一:上述证明过程中的“依据1”和“依据2”分别是指:
依据1:______________________________________________;
依据2:______________________________________________.
归纳总结:上述方法是通过延长中线,使,构造了一对全等三角形,将,,转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.
任务二:如图3,,,则的取值范围是_____________;
任务三:如图4,在图3的基础上,分别以和为边作等腰直角三角形,在中,,;中,,.连接.试探究与的数量关系,并说明理由.
4.已知,.
(1)若,作,点在内.
①如图1,延长交于点,若,,则的度数为 ;
②如图2,垂直平分,点在上,,求的值;
(2)如图3,若,点在边上,,点在边上,连接,,,求的度数.
5.如图1,在平面直角坐标系中, ,动点从原点出发沿轴正方向以的速度运动,动点也同时从原点出发在轴上以的速度运动,且满足关系式,连接,设运动的时间为秒.
(1)求的值;
(2)当为何值时,
(3)如图2,在第一象限存在点,使,求.
6.如图,在平面直角坐标系中,A(a,0),B(0,b),且|a+4|+b2﹣86+16=0.
(1)求a,b的值;
(2)如图1,c为y轴负半轴上一点,连CA,过点C作CD⊥CA,使CD=CA,连BD.求证:∠CBD=45°;
(3)如图2,若有一等腰Rt△BMN,∠BMN=90°,连AN,取AN中点P,连PM、PO.试探究PM和PO的关系.
7.以点为顶点作等腰,等腰,其中,如图1所示放置,使得一直角边重合,连接、.
(1)试判断、的数量关系,并说明理由;
(2)延长交于点试求的度数;
(3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由.
8.如图,△ABC是等边三角形,点D、E分别是射线AB、射线CB上的动点,点D从点A出发沿射线AB移动,点E从点B出发沿BG移动,点D、点E同时出发并且运动速度相同.连接CD、DE.
(1)如图①,当点D移动到线段AB的中点时,求证:DE=DC.
(2)如图②,当点D在线段AB上移动但不是中点时,试探索DE与DC之间的数量关系,并说明理由.
(3)如图③,当点D移动到线段AB的延长线上,并且ED⊥DC时,求∠DEC度数.
【参考答案】
2.(1)
(2),证明见详解
(3)
【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证;
(2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可
解析:(1)
(2),证明见详解
(3)
【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证;
(2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可知为等边三角形,再利用边角边即可证明,最后根据全等三角形的性质即可证明;
(3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,如图(见详解),用同样的方法证明,再根据ED⊥DC,证出为等腰直角三角形,即可求出∠DEC的度数.
(1)
解:,
证明过程如下:由题意可知,
∵D为AB的中点,
∴,
∴,
∴.
∵为等边三角形,,
∴.
∵,
∴,
∴,
∴.
(2)
解:,
理由如下:在射线AB上截取,连接EF,如图所示,
∵为等边三角形,
∴,.
∵,,
∴为等边三角形,
∴,.
由题意知,
∴,
∴.
即.
∵,
∴.
在和中,,
∴,
∴DE与DC之间的数量关系是.
(3)
如图,在射线CB上截取,连接DF,如图所示,
∵为等边三角形,
∴,.
∵,,
∴为等边三角形,
∴,,
∴.
由题意知,
∵,
∴,
即.
∵,
∴.
在和中,,
∴,
∴.
∵ED⊥DC,
∴为等腰直角三角形,
∴.
【点睛】本题主要考查了等腰三角形,等边三角形,以及全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键.
3.(1)C;(2)见解析;(3)或或
【分析】(1)作垂足为,证明,求出CM和OM的长,即可得到点C坐标;
(2)延长相交于点,先证明,得BD=CF,再证明,得CE=EF,即可证明结论;
(3)
解析:(1)C;(2)见解析;(3)或或
【分析】(1)作垂足为,证明,求出CM和OM的长,即可得到点C坐标;
(2)延长相交于点,先证明,得BD=CF,再证明,得CE=EF,即可证明结论;
(3)分情况讨论,画出对应的等腰直角三角形的图象,做辅助线构造全等三角形,求出点P坐标.
【详解】解:如图中,作垂足为,
,
,,
在和中,
,
点坐标;
如图,延长相交于点,
,
在和中,
,
,
,
在和中,
,
,
;
(3)①如图,,,过点P作轴于点D,
在和中,
,
∴,
∴,,
∴,
∴;
②如图,,,过点P作轴于点D,
在和中,
,
∴,
∴,,
∴,
∴;
③如图,,,过点P作轴于点E,过点A作于点D,
∵,,
∴,
在和中,
,
∴,
设,,
∵,,
∴,解得,
∴,,
∴;
综上:点P的坐标是或或.
【点睛】本题考查坐标和几何综合题,解题的关键是掌握作辅助线构造全等三角形的方法,利用全等三角形的性质求解点坐标,掌握数形结合的思想.
4.任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析
【分析】任务一:依据1:根据全等的判
解析:任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析
【分析】任务一:依据1:根据全等的判定方法判断即可;
依据2:根据三角形三边关系判断;
任务二:可根据任务一的方法直接证明即可;
任务三:根据任务一的方法,延长中线构造全等三角形证明线段关系即可.
【详解】解:任务一:
依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);
依据2:三角形两边的和大于第三边.
任务二:
任务三:EF=2AD.理由如下:
如图延长AD至G,使DG=AD,
∵AD是BC边上的中线
∴BD=CD
在△ABD和△CGD中
∴△ABD≌△CGD
∴AB=CG,∠ABD=∠GCD
又∵AB=AE
∴AE=CG
在△ABC中,∠ABC+∠BAC+∠ACB=180°,
∴∠GCD+∠BAC+∠ACB=180°
又∵∠BAE=90°,∠CAF=90°
∴∠EAF+∠BAC=360°-(∠BAE+∠CAF)=180°
∴∠EAF=∠GCD
在△EAF和△GCA中
∴△EAF≌△GCA
∴EF=AG
∴EF=2AD.
【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,倍长中线法,构造全等三角形是解本题的关键.
5.(1)①15°;②;(2)
【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得;
②构造“一线三垂直”模型,证
解析:(1)①15°;②;(2)
【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得;
②构造“一线三垂直”模型,证明三角形,利用面积比等于等高的三角形的底边的比,结合已知条件即可解得.
(2)构造等边,通过证明,等边代换,得出等腰三角形,代入角度计算即得.
【详解】(1)①连接AE,在,因为,,
,,
,,
,
,
,
,,
,
,
,
故答案为:.
②过C作交DF延长线于G,连接AE
AD垂直平分BE,
,
,
,
,
故答案为:;
(2)以AB向下构造等边,连接DK,
延长AD,BK交于点T,
,,
,
,
,,
等边中,,,
,,
在和中,
,
等边三角形三线合一可知,BD是边AK的垂直平分线,
,
,
,
,
故答案为:.
【点睛】考查了等腰直角三角形的性质,外角的性质,等腰三角形的判定和性质,构造等边三角形的方法证明全等,全等三角形的性质应用很关键,熟记几何图形的性质和判定是解决图形问题的重要方法依据.
6.(1);(2);(3)
【分析】(1)把满足的关系式转化为非负数和的形式即可解答;
(2)画出图形,动点运动方向有两种情况,分情况根据列方程解答即可;
【详解】解:(1)
(
解析:(1);(2);(3)
【分析】(1)把满足的关系式转化为非负数和的形式即可解答;
(2)画出图形,动点运动方向有两种情况,分情况根据列方程解答即可;
【详解】解:(1)
(2)当动点沿轴正方向运动时,如解图-2-1:
当动点沿轴负方向运动时,如解图-2-2:
(3)过作,连
在与
∴,
在与中
∴,,
∴,,
∴是等边三角形,
∴,
又∵
∴
∵
∴
【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,添加恰当辅助线构造三角形是本题的关键.
7.(1)a=﹣4,b=4;(2)见解析;(3)MP=OP,MP⊥OP,理由见解析
【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可
解析:(1)a=﹣4,b=4;(2)见解析;(3)MP=OP,MP⊥OP,理由见解析
【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可;
(2)如图1(见解析),作于E.易证,由三角形全等的性质得,再证明是等腰直角三角形即可;
(3)如图2(见解析),延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C.证出和,再利用全等三角形的性质证明是等腰直角三角形即可.
【详解】(1)
由绝对值的非负性和平方数的非负性得:
解得:;
(2)如图1,作于E
是等腰直角三角形,
;
(3)如图2,延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C
∴
∵在四边形MCOB中,
是等腰直角三角形
∴
是等腰直角三角形
.
【点睛】本题考查了绝对值的非负数和平方数的非负性、三角形全等的判定定理与性质、等腰直角三角形的判定与性质,熟练掌握这些定理与性质是解题关键.
8.(1)BD=CE,理由见解析;(2)90°;(3)成立,理由见解析.
【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△
解析:(1)BD=CE,理由见解析;(2)90°;(3)成立,理由见解析.
【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△AEC,则BD=CE;
(2)由△ADB≌△AEC得到∠ACE=∠DBA,利用三角形内角和定理可得到∠BFC=180°-∠ACE-∠CDF=180°-∠DBA-∠BDA=∠DAB=90°;
(3)与(1)一样可证明△ADB≌△AEC,得到BD=CE,∠ACE=∠DBA,利用三角形内角和定理得到∠BFC=∠DAB=90°.
【详解】(1)∵△ABC、△ADE是等腰直角三角形,
∴AB=AC,∠BAD=∠EAC=90°,AD=AE,
∵在△ADB和△AEC中,
∴△ADB≌△AEC(SAS),∴BD=CE;
(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,
而在△CDF中,∠BFC=180°-∠ACE-∠CDF,
又∵∠CDF=∠BDA,
∴∠BFC=180°-∠DBA-∠BDA=∠DAB=90°;
(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:
∵△ABC、△ADE是等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠EAD=90°,
∵∠BAC+∠CAD=∠EAD+∠CAD,
∴∠BAD=∠CAE,
在△ADB和△AEC中,
,
∴△ADB≌△AEC(SAS),
∴BD=CE,∠ACE=∠DBA,
∴∠BFC=∠DAB=90°.
【点睛】本题考查全等三角形的判定与性质.判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,熟知判定方法并根据题目条件选择合适的方法进行解答.
9.(1)见详解;
(2)DE=DC,理由见详解;
(3)∠DEC=45°
【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证
(2)猜测,寻找条件证明即可.最常用
解析:(1)见详解;
(2)DE=DC,理由见详解;
(3)∠DEC=45°
【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证
(2)猜测,寻找条件证明即可.最常用的是证明两个三角形全等,但图中给出的三角形中并未出现全等三角形,所以添加辅助线:在射线AB上截取,这样只要证明即可.利用等边三角形的性质及可知为等边三角形,这样通过两个等边三角形即可证明.
(3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,用同样的方法证明,又因为ED⊥DC,所以为等腰之间三角形,则∠DEC度数可求.
【详解】由题意可知
∵D为AB的中点
∵为等边三角形,
(2)
理由如下:
在射线AB上截取,连接EF
∵为等边三角形
∴为等边三角形
由题意知
即
在和中,
(3)如图,在射线CB上截取,连接DF
∵为等边三角形
∴为等边三角形
由题意知
即
在和中,
∵ED⊥DC
∴为等腰直角三角形
【点睛】本题主要考查了等腰三角形,等边三角形,全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键.
展开阅读全文