收藏 分销(赏)

人教版八年级数学上册压轴题强化质量检测试题含解析(一).doc

上传人:精**** 文档编号:1737497 上传时间:2024-05-08 格式:DOC 页数:22 大小:1.16MB
下载 相关 举报
人教版八年级数学上册压轴题强化质量检测试题含解析(一).doc_第1页
第1页 / 共22页
人教版八年级数学上册压轴题强化质量检测试题含解析(一).doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述
人教版八年级数学上册压轴题强化质量检测试题含解析(一) 1.如图,是等边三角形,点分别是射线、射线上的动点,点D从点A出发沿着射线移动,点E从点B出发沿着射线移动,点同时出发并且移动速度相同,连接. (1)如图①,当点D移动到线段的中点时,与的长度关系是:_______. (2)如图②,当点D在线段上移动但不是中点时,探究与之间的数量关系,并证明你的结论. (3)如图③,当点D移动到线段的延长线上,并且时,求的度数. 2.在平面直角坐标系中,,点在第一象限,, (1)如图,求点的坐标. (2)如图,作的角平分线,交于点,过点作于点,求证: (3)若点在第二象限,且为等腰直角三角形,请直接写出所有满足条件的点的坐标. 3.阅读下列材料,完成相应任务. 数学活动课上,老师提出了如下问题: 如图1,已知中,是边上的中线. 求证:. 智慧小组的证法如下: 证明:如图2,延长至,使, ∵是边上的中线∴ 在和中 ∴(依据一)∴ 在中,(依据二) ∴. 任务一:上述证明过程中的“依据1”和“依据2”分别是指: 依据1:______________________________________________; 依据2:______________________________________________. 归纳总结:上述方法是通过延长中线,使,构造了一对全等三角形,将,,转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系. 任务二:如图3,,,则的取值范围是_____________; 任务三:如图4,在图3的基础上,分别以和为边作等腰直角三角形,在中,,;中,,.连接.试探究与的数量关系,并说明理由. 4.已知,. (1)若,作,点在内. ①如图1,延长交于点,若,,则的度数为 ; ②如图2,垂直平分,点在上,,求的值; (2)如图3,若,点在边上,,点在边上,连接,,,求的度数. 5.如图1,在平面直角坐标系中, ,动点从原点出发沿轴正方向以的速度运动,动点也同时从原点出发在轴上以的速度运动,且满足关系式,连接,设运动的时间为秒. (1)求的值; (2)当为何值时, (3)如图2,在第一象限存在点,使,求. 6.如图,在平面直角坐标系中,A(a,0),B(0,b),且|a+4|+b2﹣86+16=0. (1)求a,b的值; (2)如图1,c为y轴负半轴上一点,连CA,过点C作CD⊥CA,使CD=CA,连BD.求证:∠CBD=45°; (3)如图2,若有一等腰Rt△BMN,∠BMN=90°,连AN,取AN中点P,连PM、PO.试探究PM和PO的关系. 7.以点为顶点作等腰,等腰,其中,如图1所示放置,使得一直角边重合,连接、. (1)试判断、的数量关系,并说明理由; (2)延长交于点试求的度数; (3)把两个等腰直角三角形按如图2放置,(1)、(2)中的结论是否仍成立?请说明理由. 8.如图,△ABC是等边三角形,点D、E分别是射线AB、射线CB上的动点,点D从点A出发沿射线AB移动,点E从点B出发沿BG移动,点D、点E同时出发并且运动速度相同.连接CD、DE. (1)如图①,当点D移动到线段AB的中点时,求证:DE=DC. (2)如图②,当点D在线段AB上移动但不是中点时,试探索DE与DC之间的数量关系,并说明理由. (3)如图③,当点D移动到线段AB的延长线上,并且ED⊥DC时,求∠DEC度数. 【参考答案】 2.(1) (2),证明见详解 (3) 【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证; (2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可 解析:(1) (2),证明见详解 (3) 【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证; (2)猜测,在射线AB上截取,如图(见详解),利用等边三角形的性质及可知为等边三角形,再利用边角边即可证明,最后根据全等三角形的性质即可证明; (3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,如图(见详解),用同样的方法证明,再根据ED⊥DC,证出为等腰直角三角形,即可求出∠DEC的度数. (1) 解:, 证明过程如下:由题意可知, ∵D为AB的中点, ∴, ∴, ∴. ∵为等边三角形,, ∴. ∵, ∴, ∴, ∴. (2) 解:, 理由如下:在射线AB上截取,连接EF,如图所示, ∵为等边三角形, ∴,. ∵,, ∴为等边三角形, ∴,. 由题意知, ∴, ∴. 即. ∵, ∴. 在和中,, ∴, ∴DE与DC之间的数量关系是. (3) 如图,在射线CB上截取,连接DF,如图所示, ∵为等边三角形, ∴,. ∵,, ∴为等边三角形, ∴,, ∴. 由题意知, ∵, ∴, 即. ∵, ∴. 在和中,, ∴, ∴. ∵ED⊥DC, ∴为等腰直角三角形, ∴. 【点睛】本题主要考查了等腰三角形,等边三角形,以及全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键. 3.(1)C;(2)见解析;(3)或或 【分析】(1)作垂足为,证明,求出CM和OM的长,即可得到点C坐标; (2)延长相交于点,先证明,得BD=CF,再证明,得CE=EF,即可证明结论; (3) 解析:(1)C;(2)见解析;(3)或或 【分析】(1)作垂足为,证明,求出CM和OM的长,即可得到点C坐标; (2)延长相交于点,先证明,得BD=CF,再证明,得CE=EF,即可证明结论; (3)分情况讨论,画出对应的等腰直角三角形的图象,做辅助线构造全等三角形,求出点P坐标. 【详解】解:如图中,作垂足为, , ,, 在和中, , 点坐标; 如图,延长相交于点, , 在和中, , , , 在和中, , , ; (3)①如图,,,过点P作轴于点D, 在和中, , ∴, ∴,, ∴, ∴; ②如图,,,过点P作轴于点D, 在和中, , ∴, ∴,, ∴, ∴; ③如图,,,过点P作轴于点E,过点A作于点D, ∵,, ∴, 在和中, , ∴, 设,, ∵,, ∴,解得, ∴,, ∴; 综上:点P的坐标是或或. 【点睛】本题考查坐标和几何综合题,解题的关键是掌握作辅助线构造全等三角形的方法,利用全等三角形的性质求解点坐标,掌握数形结合的思想. 4.任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析 【分析】任务一:依据1:根据全等的判 解析:任务一:依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”);依据2:三角形两边的和大于第三边;任务二:;任务三:EF=2AD,见解析 【分析】任务一:依据1:根据全等的判定方法判断即可; 依据2:根据三角形三边关系判断; 任务二:可根据任务一的方法直接证明即可; 任务三:根据任务一的方法,延长中线构造全等三角形证明线段关系即可. 【详解】解:任务一: 依据1:两边和它们的夹角分别相等的两个三角形全等(或“边角边”或“SAS”); 依据2:三角形两边的和大于第三边. 任务二: 任务三:EF=2AD.理由如下: 如图延长AD至G,使DG=AD, ∵AD是BC边上的中线 ∴BD=CD 在△ABD和△CGD中 ∴△ABD≌△CGD ∴AB=CG,∠ABD=∠GCD 又∵AB=AE ∴AE=CG 在△ABC中,∠ABC+∠BAC+∠ACB=180°, ∴∠GCD+∠BAC+∠ACB=180° 又∵∠BAE=90°,∠CAF=90° ∴∠EAF+∠BAC=360°-(∠BAE+∠CAF)=180° ∴∠EAF=∠GCD 在△EAF和△GCA中 ∴△EAF≌△GCA ∴EF=AG ∴EF=2AD. 【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,倍长中线法,构造全等三角形是解本题的关键. 5.(1)①15°;②;(2) 【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得; ②构造“一线三垂直”模型,证 解析:(1)①15°;②;(2) 【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得; ②构造“一线三垂直”模型,证明三角形,利用面积比等于等高的三角形的底边的比,结合已知条件即可解得. (2)构造等边,通过证明,等边代换,得出等腰三角形,代入角度计算即得. 【详解】(1)①连接AE,在,因为,, ,, ,, , , , ,, , , , 故答案为:. ②过C作交DF延长线于G,连接AE AD垂直平分BE, , , , , 故答案为:; (2)以AB向下构造等边,连接DK, 延长AD,BK交于点T, ,, , , ,, 等边中,,, ,, 在和中, , 等边三角形三线合一可知,BD是边AK的垂直平分线, , , , , 故答案为:. 【点睛】考查了等腰直角三角形的性质,外角的性质,等腰三角形的判定和性质,构造等边三角形的方法证明全等,全等三角形的性质应用很关键,熟记几何图形的性质和判定是解决图形问题的重要方法依据. 6.(1);(2);(3) 【分析】(1)把满足的关系式转化为非负数和的形式即可解答; (2)画出图形,动点运动方向有两种情况,分情况根据列方程解答即可; 【详解】解:(1) ( 解析:(1);(2);(3) 【分析】(1)把满足的关系式转化为非负数和的形式即可解答; (2)画出图形,动点运动方向有两种情况,分情况根据列方程解答即可; 【详解】解:(1) (2)当动点沿轴正方向运动时,如解图-2-1:     当动点沿轴负方向运动时,如解图-2-2: (3)过作,连 在与 ∴, 在与中 ∴,, ∴,, ∴是等边三角形, ∴, 又∵ ∴ ∵ ∴ 【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,添加恰当辅助线构造三角形是本题的关键. 7.(1)a=﹣4,b=4;(2)见解析;(3)MP=OP,MP⊥OP,理由见解析 【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可 解析:(1)a=﹣4,b=4;(2)见解析;(3)MP=OP,MP⊥OP,理由见解析 【分析】(1)先利用完全平方公式将a和b的式子化成绝对值与平方数之和的形式,再利用绝对值的非负数和平方数的非负性即可; (2)如图1(见解析),作于E.易证,由三角形全等的性质得,再证明是等腰直角三角形即可; (3)如图2(见解析),延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C.证出和,再利用全等三角形的性质证明是等腰直角三角形即可. 【详解】(1) 由绝对值的非负性和平方数的非负性得: 解得:; (2)如图1,作于E 是等腰直角三角形, ; (3)如图2,延长MP至Q,使得,连接AQ,OQ,OM,延长MN交AO于C ∴ ∵在四边形MCOB中, 是等腰直角三角形 ∴ 是等腰直角三角形 . 【点睛】本题考查了绝对值的非负数和平方数的非负性、三角形全等的判定定理与性质、等腰直角三角形的判定与性质,熟练掌握这些定理与性质是解题关键. 8.(1)BD=CE,理由见解析;(2)90°;(3)成立,理由见解析. 【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△ 解析:(1)BD=CE,理由见解析;(2)90°;(3)成立,理由见解析. 【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△AEC,则BD=CE; (2)由△ADB≌△AEC得到∠ACE=∠DBA,利用三角形内角和定理可得到∠BFC=180°-∠ACE-∠CDF=180°-∠DBA-∠BDA=∠DAB=90°; (3)与(1)一样可证明△ADB≌△AEC,得到BD=CE,∠ACE=∠DBA,利用三角形内角和定理得到∠BFC=∠DAB=90°. 【详解】(1)∵△ABC、△ADE是等腰直角三角形, ∴AB=AC,∠BAD=∠EAC=90°,AD=AE, ∵在△ADB和△AEC中, ∴△ADB≌△AEC(SAS),∴BD=CE; (2)∵△ADB≌△AEC,∴∠ACE=∠ABD, 而在△CDF中,∠BFC=180°-∠ACE-∠CDF, 又∵∠CDF=∠BDA, ∴∠BFC=180°-∠DBA-∠BDA=∠DAB=90°; (3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下: ∵△ABC、△ADE是等腰直角三角形, ∴AB=AC,AD=AE,∠BAC=∠EAD=90°, ∵∠BAC+∠CAD=∠EAD+∠CAD, ∴∠BAD=∠CAE, 在△ADB和△AEC中, , ∴△ADB≌△AEC(SAS), ∴BD=CE,∠ACE=∠DBA, ∴∠BFC=∠DAB=90°. 【点睛】本题考查全等三角形的判定与性质.判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,熟知判定方法并根据题目条件选择合适的方法进行解答. 9.(1)见详解; (2)DE=DC,理由见详解; (3)∠DEC=45° 【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证 (2)猜测,寻找条件证明即可.最常用 解析:(1)见详解; (2)DE=DC,理由见详解; (3)∠DEC=45° 【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证 (2)猜测,寻找条件证明即可.最常用的是证明两个三角形全等,但图中给出的三角形中并未出现全等三角形,所以添加辅助线:在射线AB上截取,这样只要证明即可.利用等边三角形的性质及可知为等边三角形,这样通过两个等边三角形即可证明. (3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,用同样的方法证明,又因为ED⊥DC,所以为等腰之间三角形,则∠DEC度数可求. 【详解】由题意可知 ∵D为AB的中点 ∵为等边三角形, (2) 理由如下: 在射线AB上截取,连接EF ∵为等边三角形 ∴为等边三角形 由题意知 即 在和中, (3)如图,在射线CB上截取,连接DF ∵为等边三角形 ∴为等边三角形 由题意知 即 在和中, ∵ED⊥DC ∴为等腰直角三角形 【点睛】本题主要考查了等腰三角形,等边三角形,全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服