收藏 分销(赏)

勾股定理的证明方法.doc

上传人:快乐****生活 文档编号:1732370 上传时间:2024-05-08 格式:DOC 页数:6 大小:87.50KB 下载积分:6 金币
下载 相关 举报
勾股定理的证明方法.doc_第1页
第1页 / 共6页
勾股定理的证明方法.doc_第2页
第2页 / 共6页


点击查看更多>>
资源描述
勾股定理的证明方法 勾股定理是初等几何中的一个基本定理。这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明.下面结合几种图形来进行证明。          一、传说中毕达哥拉斯的证法(图1)   左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。   在西方,人们认为是毕达哥拉斯最早发现并证明这一定理的,但遗憾的是,他的证明方法已经失传,这是传说中的证明方法,这种证明方法简单、直观、易懂。   二、赵爽弦图的证法(图2)   第一种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为 的直   角三角形围在外面形成的。因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式,化简得。   第二种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为 的   角三角形拼接形成的(虚线表示),不过中间缺出一个边长为的正方形“小洞”。   因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式,化简得。       这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。   三、美国第20任总统茄菲尔德的证法(图3)   这个直角梯形是由2个直角边分别为、,斜边为 的直角三角形和1个直角边为   的等腰直角三角形拼成的。因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式,化简得。   这种证明方法由于用了梯形面积公式和三角形面积公式,从而使证明更加简洁,它在数学史上被传为佳话。 古希腊数学的伟大成就: 1、 使数学成为抽象性的一门科学; 2、 建立了演绎证明体系,希腊成为论证数学发祥地; 3、 创立了几何学、三角学,奠定了数论基础等; 4、 萌芽了一些高等数学,如数论、极限等; 5、 希腊人发现定理及证明,逻辑结构严密,论证认真细致,为后世树立了样板等; 不足: 如,重几何轻代数,认为几何方法是数学证明唯一方法,畏于无理数的存在,而不将算术应用于几何;几何作图严格限制规尺。 古希腊的数学方法论 泰勒斯最先提出数学方法论,数学命题要加以演绎证明,在数学中要建立一般的原理好人规则,数学命题的证明就是要借助一些公理或真实性已经确定的命题来论证某一命题真实性的思想过程。演绎证明的方法即演绎推理的方法,指从一般到特殊的推理方法,其核心是三段论法,即有两个已知判断,推出第三个判断,例如,平行四边形的对角线互相平分(第一个已知一般判断成为大前提),矩形是平行四边形(另一个已知较特殊的判断,成为小前提),则矩形的对角线互相平分(推出新判断,即结论)。用演绎法证明命题使几何由实验阶段,过渡到一门抽象的理论科学,使人类对自然的认识由感性(或经验)认识上升到理性认识,因此这是一个划时代的贡献。 后来亚里士多德(公元前384—前322)推出逻辑方法论,创建公理方法和数学证明原理,使演绎推理的方法系统化,建立了逻辑学。欧几里得则在数学中实现了公理化,他的《几何原本》奠定了古希腊数学方法论的基础:采用公理法构建数学理论体系,逻辑证明是数学的基本方法。 因此, 数学中的方法、发明与创新表现为提出新命题、证明未证的命题,改进已证命题的证明,由命题构成新的公理体系等。 例如:小学三年级的《搭配》 问题1、某女士外出旅行时带了2件不同颜色的上衣和3条不同颜色的裙子,问:共有多少种不同的搭配方法? 教师鼓励学生用“实验”的方法去解决问题:学生拿出了纸和笔,开始在纸上“实际地”画出各种可能的组合。实验表明,大多数学生都可以凭借自己的努力,单独或合作地得出正确答案。进而,教师又要求学生对自己的结论的正确性作出“说明”——当然,并非严格的论证,而主要是一种朴素的说明。作为“问题解决”的一次实践活动,该节课较好地体现了“学数学就是做数学”这样一个思想,更使学生实际地体会到了“实验”在数学发现中的作用。然而,我们都这一教学活动进行反思,学生通过这一活动学到了说明?他表示,我们能否认为学生已经掌握了相关的数学知识? 因此,作为一种较好的检验方法,可以要求学生进一步解决类似的问题: 1、 某男士外出旅行时带了2件不套不同的西装和3条不同颜色的领带,问:共有多少种不同的搭配方法? 2、 有2个军官和3个士兵。现由1个军官和1个士兵组成巡逻队,问:共有多少种不同的组成方式? 再例如: 1、 某女士外出旅行时带了3件不同颜色的上衣和4条不同颜色的裙子,问:共有多少种不同的搭配方法? 2、 有4个军官和5个士兵。现由1个军官和1个士兵组成巡逻队,问:共有多少种不同的组成方式? 显然,在此还是允许学生继续采取“实验”方法,但是,如果某个学生始终停留在“实验和归纳”的水平,我们就不能认为这个学生已经掌握了相应的数学知识。因为,数学是模式的科学。 与上面的教学实例十分相似,就数学在古埃及、巴比伦等地的早期发展而言,人们主要通过观察或实验以及对于经验事实的简单归纳获得了关于真实事物或现象量性属性的某些知识,但从现今的观点看,这只能说是经验的知识而不能被看成真正的数学知识,因为,真正的数学知识是关于抽象的数学对象的研究,而非对于真实事物或现象量性属性的直接研究。例如,就几何的研究而言,这也就是指,“三角形”具有什么性质?“圆”具有什么性质?而不是指,某些“三角形的事物”具有什么性质?某些“圆形的事物”具有什么性质? 从历史的角度看,古希腊人首先在这一方面迈出了关键的一步,即引进了相对独立的数学对象,并以此作为数学研究的直接对象。虽然,在历史上曾经存在多种不同的数学传统,但由古希腊所开创的这一传统已为人们普遍接受。 数学具有抽象性:一笔画,插花问题。 数学教学应该化难为易,化神奇为平凡。 3、通过活动,使学生养成博览群书的好习惯。 B比率分析法和比较分析法不能测算出各因素的影响程度。√ C采用约当产量比例法,分配原材料费用与分配加工费用所用的完工率都是一致的。X C采用直接分配法分配辅助生产费用时,应考虑各辅助生产车间之间相互提供产品或劳务的情况。错 C产品的实际生产成本包括废品损失和停工损失。√ C成本报表是对外报告的会计报表。× C成本分析的首要程序是发现问题、分析原因。× C成本会计的对象是指成本核算。× C成本计算的辅助方法一般应与基本方法结合使用而不单独使用。√ C成本计算方法中的最基本的方法是分步法。X D当车间生产多种产品时,“废品损失”、“停工损失”的借方余额,月末均直接记入该产品的产品成本 中。× D定额法是为了简化成本计算而采用的一种成本计算方法。× F“废品损失”账户月末没有余额。√ F废品损失是指在生产过程中发现和入库后发现的不可修复废品的生产成本和可修复废品的修复费用。X F分步法的一个重要特点是各步骤之间要进行成本结转。(√) G各月末在产品数量变化不大的产品,可不计算月末在产品成本。错 G工资费用就是成本项目。(×) G归集在基本生产车间的制造费用最后均应分配计入产品成本中。对 J计算计时工资费用,应以考勤记录中的工作时间记录为依据。(√) J简化的分批法就是不计算在产品成本的分批法。(×) J简化分批法是不分批计算在产品成本的方法。对 J加班加点工资既可能是直接计人费用,又可能是间接计人费用。√ J接生产工艺过程的特点,工业企业的生产可分为大量生产、成批生产和单件生产三种,X K可修复废品是指技术上可以修复使用的废品。错 K可修复废品是指经过修理可以使用,而不管修复费用在经济上是否合算的废品。X P品种法只适用于大量大批的单步骤生产的企业。× Q企业的制造费用一定要通过“制造费用”科目核算。X Q企业职工的医药费、医务部门、职工浴室等部门职工的工资,均应通过“应付工资”科目核算。X S生产车间耗用的材料,全部计入“直接材料”成本项目。X S适应生产特点和管理要求,采用适当的成本计算方法,是成本核算的基础工作。(×) W完工产品费用等于月初在产品费用加本月生产费用减月末在产品费用。对 Y“预提费用”可能出现借方余额,其性质属于资产,实际上是待摊费用。对 Y引起资产和负债同时减少的支出是费用性支出。X Y以应付票据去偿付购买材料的费用,是成本性支出。X Y原材料分工序一次投入与原材料在每道工序陆续投入,其完工率的计算方法是完全一致的。X Y运用连环替代法进行分析,即使随意改变各构成因素的替换顺序,各因素的影响结果加总后仍等于指标的总差异,因此更换各因索替换顺序,不会影响分析的结果。(×) Z在产品品种规格繁多的情况下,应该采用分类法计算产品成本。对 Z直接生产费用就是直接计人费用。X Z逐步结转分步法也称为计列半成品分步法。√ A按年度计划分配率分配制造费用,“制造费用”账户月末(可能有月末余额/可能有借方余额/可能有贷方余额/可能无月末余额)。 A按年度计划分配率分配制造费用的方法适用于(季节性生产企业)
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服