收藏 分销(赏)

特殊的平行四边形-矩形-PPT.ppt

上传人:a199****6536 文档编号:1732009 上传时间:2024-05-08 格式:PPT 页数:24 大小:1,008.50KB
下载 相关 举报
特殊的平行四边形-矩形-PPT.ppt_第1页
第1页 / 共24页
特殊的平行四边形-矩形-PPT.ppt_第2页
第2页 / 共24页
特殊的平行四边形-矩形-PPT.ppt_第3页
第3页 / 共24页
特殊的平行四边形-矩形-PPT.ppt_第4页
第4页 / 共24页
特殊的平行四边形-矩形-PPT.ppt_第5页
第5页 / 共24页
点击查看更多>>
资源描述

1、特殊的平行四边形-矩形两组对边分别平行的四边形是平行四边形两组对边分别平行的四边形是平行四边形ABCD四边形四边形ABCD如果如果AB CD AD BCBDABCDAC平行四平行四边形的边形的性质:性质:边边平行四边形的对边平行;平行四边形的对边平行;平行四边形的对边相等;平行四边形的对边相等;角角平行四边形的对角相等;平行四边形的对角相等;平行四边形的邻角互补;平行四边形的邻角互补;对角线对角线平行四边形的对角线互相平分;平行四边形的对角线互相平分;平行四平行四边形的边形的判定:判定:边边两组对边分别平行的四边形;两组对边分别平行的四边形;两组对边分别相等的四边形;两组对边分别相等的四边形;

2、角角两组对角分别相等的四边形;两组对角分别相等的四边形;对角线对角线对角线互相平分的四边形;对角线互相平分的四边形;一组对边平行且相等的四边形;一组对边平行且相等的四边形;平行四边形的判定定理:平行四边形的判定定理:一个角是一个角是直角直角两组对边两组对边分别平行分别平行平行平行四边形四边形矩形矩形情情景景创创设设我们已经知道平行四边形是特殊的我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,边形的性质外,还有它的特殊性质,同样对于平行四边形来说有特殊情同样对于平行四边形来说有特殊情况即特殊的平行四边形,也就是这况即特殊的

3、平行四边形,也就是这堂课我们就来研究一种特殊的平行堂课我们就来研究一种特殊的平行四边形四边形 矩形矩形有一个角是直角的平行四边形是矩形矩形的定义:平行四边形平行四边形矩形矩形有一个角有一个角 是直角是直角矩形是特殊的平行四边形矩形是特殊的平行四边形具具备备平行四平行四边边形所有的性形所有的性质质ABCDO角角边边对角线对角线对边平行且相等对边平行且相等对角相等对角相等对角线互相平分对角线互相平分矩形的一般性质矩形的一般性质:大家有疑问的,可以询问和交流大家有疑问的,可以询问和交流可以互相讨论下,但要小声点可以互相讨论下,但要小声点可以互相讨论下,但要小声点可以互相讨论下,但要小声点探索新知探索

4、新知:矩形是一个特殊的平行四边形,除了具有平行矩形是一个特殊的平行四边形,除了具有平行四边形的所有性质外,还有哪些特殊性质呢?四边形的所有性质外,还有哪些特殊性质呢?猜想1:矩形的四个角都是直角猜想2:矩形的对角线相等ABCD求证:矩形的四个角都是直角求证:矩形的四个角都是直角已知:如图,四边形已知:如图,四边形ABCD是矩形是矩形求证:求证:A=B=C=D=90ABCD证明:证明:四边形四边形ABCD是矩形是矩形 A=90又又 矩形矩形ABCD是平行四边形是平行四边形 A=C B=D A+B=180 A=B=C=D=90即矩形的四个角都是直角即矩形的四个角都是直角已知:如图已知:如图,四边形

5、四边形ABCD是矩形是矩形 求证:求证:AC=BDABCD证明:在矩形证明:在矩形ABCD中中ABC=DCB=90又又 AB=DC,BC=CBABCDCBAC=BD 即矩形的对角线相等即矩形的对角线相等求证求证:矩形的对角线相等矩形的对角线相等矩形特殊的性质矩形特殊的性质矩形的四个角都是直角矩形的四个角都是直角矩形的两条对角线相等矩形的两条对角线相等从角上看:从角上看:从对角线上看:从对角线上看:矩形的矩形的 两条对角线互相平分两条对角线互相平分矩形的两组对边分别相等矩形的两组对边分别相等矩形的两组对边分别平行矩形的两组对边分别平行矩形的四个角都是直角矩形的四个角都是直角矩形矩形 的两条对角线

6、相等的两条对角线相等边边对角线对角线角角数学语言数学语言四边形四边形ABCD是矩形是矩形AD=BC,CD=ABAD BC,CD ABAC=BD ABCDOAO=CO,OD=OB观察并思考下面这些物体是什么形状,它们是轴对称图形吗?是中心对称图形吗?有几条对称轴?对边平行对边平行且相等且相等对角相等对角相等邻角互补邻角互补对角线互对角线互相平分相平分中心对中心对称图形称图形对边平行对边平行且相等且相等四个角四个角为直角为直角对角线互相对角线互相平分且相等平分且相等中心对称图形中心对称图形 轴对称图形轴对称图形O这是矩形所这是矩形所特有的性质特有的性质 四个学生正在做投圈游戏四个学生正在做投圈游戏

7、,他们分别站在一他们分别站在一个矩形的四个顶点处,目标物放在对角线的交点个矩形的四个顶点处,目标物放在对角线的交点处处,这样的队形对每个人公平吗这样的队形对每个人公平吗?为什么?为什么?OABCD公平公平,因为因为OA=OC=OB=OD 如图,在矩形ABCD中,找出相等的线段与相等的角。ADCB O小试牛刀小试牛刀ODCBA相等的线段:相等的线段:AB=CD AD=BC AC=BD OA=OC=OB=OD=AC=BD相等的角:相等的角:DAB=ABC=BCD=CDA=90 AOB=DOC AOD=BOC OAB=OBA=ODC=OCD OAD=ODA=OBC=OCB等腰三角形有:等腰三角形有:

8、OAB OBC OCD OAD直角三角形有:直角三角形有:Rt ABC Rt BCD Rt CDA Rt DAB全等三角形有:全等三角形有:Rt ABC Rt BCD Rt CDA Rt DAB OABOCD OADOCB已知四边形已知四边形ABCD是矩形是矩形已知:在已知:在RtABC中,中,ABC=900,BO是是AC上的中线上的中线.求证求证:BO=ACO OC CB BA AD证明证明:延长延长BO至至D,使使OD=BO,连结连结AD、DC.AO=OC,BO=OD四边形四边形ABCD是平行四边形是平行四边形.ABC=900 ABCD是矩形是矩形AC=BD1212BO=BD=AC再探新知

9、再探新知例例1:1:如图,矩形如图,矩形ABCDABCD的两条对角线相交的两条对角线相交于点于点O O,AOB=60,AB=4AOB=60,AB=4,求矩形对角求矩形对角线的长?线的长?AC与与BD相等且互相平分相等且互相平分 OA=OB AOB=60 AOB是等边三角形是等边三角形 OA=AB=4()矩形的对角线长矩形的对角线长 AC=BD=2OA=8()解:解:四边形四边形ABCD是矩形是矩形DCBAo2020P95P95练习练习3 3:已知:如图,矩形:已知:如图,矩形ABCDABCD的两的两条对角线相交于点条对角线相交于点O O,AOD=120AOD=120,AC=8cmAC=8cm,

10、求矩形对角线的长,求矩形对角线的长.ABOCD解:在矩形ABCD中,AOD=120 AOB=60OA=OB AOB为等边三角形为等边三角形AB=OA=AC=4cm在RtABC中,6.93(cm)BC=方法小结方法小结:如果矩形两对角如果矩形两对角 线的夹角是线的夹角是60 或或120,则其中必有等边三角形则其中必有等边三角形.2121矩形具有而一般平行四边形不矩形具有而一般平行四边形不具有的性质是具有的性质是 ()()B.B.对边相等对边相等A.A.对角相等对角相等C.C.对角线相等对角线相等 D.D.对角线互相平分对角线互相平分C C营中热身营中热身2222已知已知:四边形四边形ABCD是矩形是矩形1.若已知若已知AB=8,AD=6,则则AC_ OB=_ 2.若已知若已知 DOC=120,AC8,则,则AD=_cm AB=_cmODCBA5104营中寻宝营中寻宝DCBA4.已知已知ABC是是Rt,ABC=900,BD是斜边是斜边AC上的中线上的中线(1)若若BD=3 则则AC (2)若若C=30,AB5,则,则AC ,BD .6510营中寻宝营中寻宝

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服