收藏 分销(赏)

人教版七7年级下册数学期末学业水平卷(及解析).doc

上传人:天**** 文档编号:1727835 上传时间:2024-05-08 格式:DOC 页数:28 大小:748.04KB
下载 相关 举报
人教版七7年级下册数学期末学业水平卷(及解析).doc_第1页
第1页 / 共28页
人教版七7年级下册数学期末学业水平卷(及解析).doc_第2页
第2页 / 共28页
点击查看更多>>
资源描述
人教版七7年级下册数学期末学业水平卷(及解析) 一、选择题 1.下列各图中,∠1和∠2为同旁内角的是( ) A. B. C. D. 2.如图所示的车标,可以看作由平移得到的是( ) A. B. C. D. 3.下列各点中,位于第三象限的是( ) A. B. C. D. 4.下列四个命题:①两条直线相交,若对顶角互补,则这两条直线互相垂直;②两条直线被第三条直线所截,内错角相等;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④经过直线外一点,有且只有一条直线与已知直线平行.其中是真命题的个数是( ) A.1 B.2 C.3 D.4 5.如图,的平分线的反向延长线和的平分线的反向延长线相交于点,则( ) A. B. C. D. 6.如图,数轴上的点A所表示的数为x,则x2﹣10的立方根为(  ) A.﹣10 B.﹣﹣10 C.2 D.﹣2 7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是(  ) A.15° B.60° C.30° D.75° 8.如图所示,已知点A(﹣1,2),将长方形ABOC沿x轴正方向连续翻转2021次,点A依次落在点A1,A2,A3,…,A2021的位置,则A2021的坐标是(  ) A.(3038,1) B.(3032,1) C.(2021,0) D.(2021,1) 九、填空题 9.的算术平方根为_______; 十、填空题 10.已知点P(3,﹣1),则点P关于x轴对称的点Q_____. 十一、填空题 11.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为_____. 十二、填空题 12.如图,,直角三角板直角顶点在直线上.已知,则的度数为______°. 十三、填空题 13.如图,在四边形ABCD纸片中,AD∥BC,AB∥CD.将纸片折叠,点A、B分别落在G、H处,EF为折痕,FH交CD于点K.若∠CKF=35°,则∠A+∠GED=______°. 十四、填空题 14.对于有理数x、y,当x≥y时,规定x※y=yx;而当x<y时,规定x※y=y-x,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m的值为______. 十五、填空题 15.如图,直角坐标系中、两点的坐标分别为,,则该坐标系内点的坐标为__________. 十六、填空题 16.如图,在平面直角坐标系中,点,点,点,点按照这样的规律下去,点的坐标为__________. 十七、解答题 17.计算: (1) (2) 十八、解答题 18.求下列各式中x的值: (1)9x2-25=0; (2)(x+3)3+27=0. 十九、解答题 19.如图,∠1=∠2,∠3=∠C,∠4=∠5.请说明BF//DE的理由.(请在括号中填上推理依据) 解:∵∠1=∠2(已知) ∴CF//BD(    ) ∴∠3+∠CAB=180°(    ) ∵∠3=∠C(已知) ∴∠C+∠CAB=180°(等式的性质) ∴AB//CD(    ) ∴∠4=∠EGA(两直线平行,同位角相等) ∵∠4=∠5(已知) ∴∠5=∠EGA(等量代换) ∴ED//FB(    ) 二十、解答题 20.如图,在平面直角坐标系中,已知P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P1(a+6,b+2). (1)请画出上述平移后的△A1B1C1,并写出点A1,C1的坐标; (2)写出平移的过程; (3)求出以A,C,A1,C1为顶点的四边形的面积. 二十一、解答题 21.实数在数轴上的对应点的位置如图所示,. (1)求的值; (2)已知的小数部分是,的小数部分是,求的平方根. 二十二、解答题 22.如图,用两个边长为10的小正方形拼成一个大的正方形. (1)求大正方形的边长? (2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm2? 二十三、解答题 23.综合与探究 (问题情境) 王老师组织同学们开展了探究三角之间数量关系的数学活动 (1)如图1,,点、分别为直线、上的一点,点为平行线间一点,请直接写出、和之间的数量关系;             (问题迁移) (2)如图2,射线与射线交于点,直线,直线分别交、于点、,直线分别交、于点、,点在射线上运动, ①当点在、(不与、重合)两点之间运动时,设,.则,,之间有何数量关系?请说明理由. ②若点不在线段上运动时(点与点、、三点都不重合),请你画出满足条件的所有图形并直接写出,,之间的数量关系. 二十四、解答题 24.如图,直线,一副三角板(,,)按如图①放置,其中点在直线上,点均在直线上,且平分. (1)求的度数. (2)如图②,若将三角形绕点以每秒的速度按逆时针方向旋转(的对应点分别为).设旋转时间为秒. ①在旋转过程中,若边,求的值; ②若在三角形绕点旋转的同时,三角形绕点以每秒的速度按顺时针方向旋转(的对应点分别为).请直接写出当边时的值. 二十五、解答题 25.如图,直线,一副直角三角板中,. (1)若如图1摆放,当平分时,证明:平分. (2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数. (4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长. (5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据同旁内角的概念逐一判断可得. 【详解】 解:A、∠1与∠2是同位角,此选项不符合题意; B、此图形中∠1与∠2不构成直接关系,此选项不符合题意; C、∠1与∠2是同旁内角,此选项符合题意; D、此图形中∠1与∠2不构成直接关系,此选项不符合题意; 故选C. 【点睛】 本题主要考查了同旁内角的概念,解题的关键在于能够熟练掌握同旁内角的概念. 2.B 【分析】 根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解. 【详解】 解:A、不能经过平移得到的,故不符合题意; B、可以经过平 解析:B 【分析】 根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解. 【详解】 解:A、不能经过平移得到的,故不符合题意; B、可以经过平移得到的,故符合题意; C、不能经过平移得到的,故不符合题意; D、不能经过平移得到的,故不符合题意; 故选B. 【点睛】 本题主要考查了图形的平移,解题的关键在于能够熟练掌握图形平移的概念. 3.C 【分析】 根据各象限的点的特征即可判断,第三象限的点的特征是:横纵坐标都是负数. 【详解】 位于第三象限的点的横坐标和纵坐标都是负数, C符合题意, 故选C. 【点睛】 本题考查了平面直角坐标系的定义,掌握各象限的点坐标的符号是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0. 4.C 【分析】 根据对顶角的性质和垂直的定义判断①;根据内错角相等的判定方法判定②;根据平行线的判定对③进行判断;根据经过直线外一点,有且只有一条直线与已知直线平行判断④即可 【详解】 解:两条直线相交,若对顶角互补,则这两条直线互相垂直,所以①正确; 两条互相平行的直线被第三条直线所截,内错角相等;,所以②错误; 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,所以③正确; 经过直线外一点,有且只有一条直线与已知直线平行,所以④正确. 故选:C. 【点睛】 本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,熟练掌握相关性质是解题的关键. 5.A 【分析】 分别过、作的平行线和,根据平行线的性质和角平分线的性质可用和分别表示出和,从而可找到和的关系,结合条件可求得. 【详解】 解:如图,分别过、作的平行线和, , , ,, , , , , 又, , , , 故选:A. 【点睛】 本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补,④,. 6.D 【分析】 先根据在数轴上的直角三角形运用勾股定理可得斜边长,即可得x的值,进而可得则的值,再根据立方根的定义即可求得其立方根. 【详解】 根据图象:直角三角形两边长分别为2和1, ∴ ∴x在数轴原点左面, ∴, 则, 则它的立方根为; 故选:D. 【点睛】 本题考查的知识点是实数与数轴上的点的对应关系及勾股定理,解题关键是应注意数形结合,来判断A点表示的实数. 7.C 【分析】 直接利用平行线的性质结合等腰直角三角形的性质得出答案. 【详解】 解:如图所示:由题意可得:∠1=∠3=15°, 则∠2=45°﹣∠3=30°. 故选:C. 【点睛】 本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用. 8.B 【分析】 观察探究规律发现A1(2,1),A2(3,0)A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6, 解析:B 【分析】 观察探究规律发现A1(2,1),A2(3,0)A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6,利用周期变化规律即可求解. 【详解】 解:由题意A1(2,1),A2(3,0),A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6, ∵2021÷4=505.....1, ∴A2021的纵坐标与A1相同, 横坐标=505×6+2=3032, ∴A2021(3032,1), 故选B. 【点睛】 本题主要考查坐标与图形的变化规律型问题,解题的关键是学会探究规律的方法. 九、填空题 9.【分析】 先求出的值,然后再化简求值即可. 【详解】 解:∵, ∴2的算术平方根是, ∴的算术平方根是. 故答案为. 【点睛】 本题考查了算术平方根的定义,灵活运用算术平方根的定义的定义求解是解答 解析: 【分析】 先求出的值,然后再化简求值即可. 【详解】 解:∵, ∴2的算术平方根是, ∴的算术平方根是. 故答案为. 【点睛】 本题考查了算术平方根的定义,灵活运用算术平方根的定义的定义求解是解答本题的关键,直接求解是本题的易错点. 十、填空题 10.(3,1) 【分析】 根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可. 【详解】 解:∵点P(3,﹣1) ∴点P关于x轴对称的点Q(3,1) 故答案为(3,1). 【点睛】 本题主要 解析:(3,1) 【分析】 根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可. 【详解】 解:∵点P(3,﹣1) ∴点P关于x轴对称的点Q(3,1) 故答案为(3,1). 【点睛】 本题主要考查了平面直角坐标系点关于坐标轴的对称关系,熟记对称的特点是解题的关键. 十一、填空题 11.6 【详解】 如图,过点D作DH⊥AC于点H, 又∵AD是△ABC的角平分线,DF⊥AB,垂足为F, ∴DF=DH,∠AFD=∠ADH=∠DHG=90°, 又∵AD=AD,DE=DG, ∴△ADF≌ 解析:6 【详解】 如图,过点D作DH⊥AC于点H, 又∵AD是△ABC的角平分线,DF⊥AB,垂足为F, ∴DF=DH,∠AFD=∠ADH=∠DHG=90°, 又∵AD=AD,DE=DG, ∴△ADF≌△ADH,△DEF≌△DGH, 设S△DEF=,则S△AED+=S△ADG-,即38+=50-,解得:=6. ∴△EDF的面积为6. 十二、填空题 12.40 【分析】 根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解. 【详解】 解:如图所示 ∵a∥b ∴∠1=∠DAE,∠2=∠CAB ∵∠DAC=90° ∴∠D 解析:40 【分析】 根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解. 【详解】 解:如图所示 ∵a∥b ∴∠1=∠DAE,∠2=∠CAB ∵∠DAC=90° ∴∠DAE+∠CAB=180°-∠DAC=90° ∴∠1+∠2=90° ∴∠2=90°-∠1=40° 故答案为:40. 【点睛】 本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质. 十三、填空题 13.145 【分析】 首先判定四边形ABCD是平行四边形,得到∠A=∠C,AD∥BC,再根据折叠变换的性质和平行线的性质将角度转化求解. 【详解】 解:∵AD∥BC,AB∥CD, ∴四边形ABCD是平行 解析:145 【分析】 首先判定四边形ABCD是平行四边形,得到∠A=∠C,AD∥BC,再根据折叠变换的性质和平行线的性质将角度转化求解. 【详解】 解:∵AD∥BC,AB∥CD, ∴四边形ABCD是平行四边形, ∴∠A=∠C, 根据翻转折叠的性质可知,∠AEF=∠GEF,∠EFB=∠EFK, ∵AD∥BC, ∴∠DEF=∠EFB,∠AEF=∠EFC, ∴∠GEF=∠AEF=∠EFC,∠DEF=∠EFB=∠EFK, ∴∠GEF﹣∠DEF=∠EFC﹣∠EFK, ∴∠GED=∠CFK, ∵∠C+∠CFK+∠CKF=180°, ∴∠C+∠CFK=145°, ∴∠A+∠GED=145°, 故答案为145. 【点睛】 本题主要考查平行线的性质;多边形内角与外角及翻折变换(折叠问题),熟练掌握平行线的性质;多边形内角与外角及翻折变换(折叠问题)是解题的关键. 十四、填空题 14.或. 【分析】 根据新定义规定的式子将数值代入再计算即可; 先根据新定义的式子将数值代入分情况讨论列方程求解即可. 【详解】 解: 4※(-2)=; (-1)※1= [(-1)※1]※m= 解析:或. 【分析】 根据新定义规定的式子将数值代入再计算即可; 先根据新定义的式子将数值代入分情况讨论列方程求解即可. 【详解】 解: 4※(-2)=; (-1)※1= [(-1)※1]※m=2※m=36 当时,原式可化为 解得: ; 当时,原式可化为: 解得:; 综上所述,m的值为:或; 故答案为:16;或. 【点睛】 本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键. 十五、填空题 15.【分析】 首先根据A、B点坐标确定原点位置,然后再建立坐标系,再确定C点坐标即可. 【详解】 解:点C的坐标为(-1,3), 故答案为:(-1,3). 【点睛】 此题主要考查了点的坐标,关键是正 解析: 【分析】 首先根据A、B点坐标确定原点位置,然后再建立坐标系,再确定C点坐标即可. 【详解】 解:点C的坐标为(-1,3), 故答案为:(-1,3). 【点睛】 此题主要考查了点的坐标,关键是正确建立坐标系. 十六、填空题 16.【分析】 观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标; 【详解】 , , , , , 故答案为: 【点睛】 本题考查了坐标系中点的规律,找到规律是解题的关键. 解析: 【分析】 观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标; 【详解】 , , , , , 故答案为: 【点睛】 本题考查了坐标系中点的规律,找到规律是解题的关键. 十七、解答题 17.(1);(2). 【分析】 直接利用立方根以及算术平方根的定义化简得出答案. 【详解】 (1) (2) 【点睛】 此题主要考查了实数运算,正确化简各数是解题关键. 解析:(1);(2). 【分析】 直接利用立方根以及算术平方根的定义化简得出答案. 【详解】 (1) (2) 【点睛】 此题主要考查了实数运算,正确化简各数是解题关键. 十八、解答题 18.(1)x=;(2)x=-6 【分析】 (1)经过移项,系数化为1后,再开平方即可; (2)移项后开立方,再移项运算即可. 【详解】 (1) 解: (2) 解: 【点睛】 本题主要考查了实数的 解析:(1)x=;(2)x=-6 【分析】 (1)经过移项,系数化为1后,再开平方即可; (2)移项后开立方,再移项运算即可. 【详解】 (1) 解: (2) 解: 【点睛】 本题主要考查了实数的运算,熟悉掌握平方根和立方根的开方是解题的关键. 十九、解答题 19.内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行 【分析】 运用平行线的性质定理和判定定理可得结论. 【详解】 解:(已知) (内错角相等,两直线平 解析:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行 【分析】 运用平行线的性质定理和判定定理可得结论. 【详解】 解:(已知) (内错角相等,两直线平行), (两直线平行,同旁内角互补), (已知), (等式的性质), (同旁内角互补,两直线平行), (两直线平行,同位角相等), (已知), (等量代换), (同位角相等,两直线平行). 故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行. 【点睛】 本题主要考查了平行线的判定定理和性质定理,熟悉相关性质是解答此题的关键. 二十、解答题 20.(1)图见详解;;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A,C,A1,C1为顶点的四边形的面积为14. 【分析】 (1)根据点P的对应点P1(a+6,b+2)可分别 解析:(1)图见详解;;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A,C,A1,C1为顶点的四边形的面积为14. 【分析】 (1)根据点P的对应点P1(a+6,b+2)可分别得出A、B、C的对应点A1,B1,C1的坐标,然后连接即可得出图象; (2)由(1)可直接进行求解; (3)由(1)的图象可直接利用割补法进行求解面积. 【详解】 解:(1)由点P的对应点P1(a+6,b+2)可得如图所示图象: ∴由图象可得; (2)由图象可得:平移过程为先向右平移6个单位长度,再向上平移2个单位长度; (3)连接,如图所示: ∵点, ∴点在同一条直线上,且与x轴平行, ∴. 【点睛】 本题主要考查平移的性质及坐标与图形,熟练掌握坐标的平移是解题的关键. 二十一、解答题 21.(1);(2) 【分析】 (1)根据A点在数轴上的位置,可以知道2<a<3,根据a的范围去绝对值化简即可; (2)先求出b+2,得到它的整数部分,用b+2减去整数部分就是小数部分,从而求出m;同理可 解析:(1);(2) 【分析】 (1)根据A点在数轴上的位置,可以知道2<a<3,根据a的范围去绝对值化简即可; (2)先求出b+2,得到它的整数部分,用b+2减去整数部分就是小数部分,从而求出m;同理可求出n.然后求出2m+2n+1,再求平方根. 【详解】 解:(1)由图知:, ,, ; (2), 整数部分是3, ; 的整数部分是6, , , 的平方根为. 【点睛】 本题主要考查了无理数的估算,考核学生的运算能力,解题时注意一个正数的平方根有两个. 二十二、解答题 22.(1)大正方形的边长是;(2)不能 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 (1)大正方形的边长是 (2)设长方形纸 解析:(1)大正方形的边长是;(2)不能 【分析】 (1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可. 【详解】 (1)大正方形的边长是 (2)设长方形纸片的长为3xcm,宽为2xcm, 则3x•2x=480, 解得:x= 因为,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为2:3,且面积为480cm2. 【点睛】 本题考查算术平方根,解题的关键是能根据题意列出算式. 二十三、解答题 23.(1);(2)①,理由见解析;②图见解析,或 【分析】 (1)作PQ∥EF,由平行线的性质,即可得到答案; (2)①过作交于,由平行线的性质,得到,,即可得到答案; ②根据题意,可对点P进行分类讨论 解析:(1);(2)①,理由见解析;②图见解析,或 【分析】 (1)作PQ∥EF,由平行线的性质,即可得到答案; (2)①过作交于,由平行线的性质,得到,,即可得到答案; ②根据题意,可对点P进行分类讨论:当点在延长线时;当在之间时;与①同理,利用平行线的性质,即可求出答案. 【详解】 解:(1)作PQ∥EF,如图: ∵, ∴, ∴,, ∵ ∴; (2)①; 理由如下:如图, 过作交于, ∵, ∴, ∴,, ∴; ②当点在延长线时,如备用图1: ∵PE∥AD∥BC, ∴∠EPC=,∠EPD=, ∴; 当在之间时,如备用图2: ∵PE∥AD∥BC, ∴∠EPD=,∠CPE=, ∴. 【点睛】 本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系. 二十四、解答题 24.(1)60°;(2)①6s;②s或s 【分析】 (1)利用平行线的性质角平分线的定义即可解决问题. (2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题. ②分两种情形:如图③中,当 解析:(1)60°;(2)①6s;②s或s 【分析】 (1)利用平行线的性质角平分线的定义即可解决问题. (2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题. ②分两种情形:如图③中,当BG∥HK时,延长KH交MN于R.根据∠GBN=∠KRN构建方程即可解决问题.如图③-1中,当BG∥HK时,延长HK交MN于R.根据∠GBN+∠KRM=180°构建方程即可解决问题. 【详解】 解:(1)如图①中, ∵∠ACB=30°, ∴∠ACN=180°-∠ACB=150°, ∵CE平分∠ACN, ∴∠ECN=∠ACN=75°, ∵PQ∥MN, ∴∠QEC+∠ECN=180°, ∴∠QEC=180°-75°=105°, ∴∠DEQ=∠QEC-∠CED=105°-45°=60°. (2)①如图②中, ∵BG∥CD, ∴∠GBC=∠DCN, ∵∠DCN=∠ECN-∠ECD=75°-45°=30°, ∴∠GBC=30°, ∴5t=30, ∴t=6s. ∴在旋转过程中,若边BG∥CD,t的值为6s. ②如图③中,当BG∥HK时,延长KH交MN于R. ∵BG∥KR, ∴∠GBN=∠KRN, ∵∠QEK=60°+4t,∠K=∠QEK+∠KRN, ∴∠KRN=90°-(60°+4t)=30°-4t, ∴5t=30°-4t, ∴t=s. 如图③-1中,当BG∥HK时,延长HK交MN于R. ∵BG∥KR, ∴∠GBN+∠KRM=180°, ∵∠QEK=60°+4t,∠EKR=∠PEK+∠KRM, ∴∠KRM=90°-(180°-60°-4t)=4t-30°, ∴5t+4t-30°=180°, ∴t=s. 综上所述,满足条件的t的值为s或s. 【点睛】 本题考查几何变换综合题,考查了平行线的性质,旋转变换,角平分线的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题. 二十五、解答题 25.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】 (1)运用角平分线定义及平行线性质即可证得结论; (2)如图2,过点E作EK∥MN,利用平行线性 解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】 (1)运用角平分线定义及平行线性质即可证得结论; (2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案; (3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案; (4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案; (5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可. 【详解】 (1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°, ∵ED平分∠PEF, ∴∠PEF=2∠PED=2∠DEF=2×60°=120°, ∵PQ∥MN, ∴∠MFE=180°−∠PEF=180°−120°=60°, ∴∠MFD=∠MFE−∠DFE=60°−30°=30°, ∴∠MFD=∠DFE, ∴FD平分∠EFM; (2)如图2,过点E作EK∥MN, ∵∠BAC=45°, ∴∠KEA=∠BAC=45°, ∵PQ∥MN,EK∥MN, ∴PQ∥EK, ∴∠PDE=∠DEK=∠DEF−∠KEA, 又∵∠DEF=60°. ∴∠PDE=60°−45°=15°, 故答案为:15°; (3)如图3,分别过点F、H作FL∥MN,HR∥PQ, ∴∠LFA=∠BAC=45°,∠RHG=∠QGH, ∵FL∥MN,HR∥PQ,PQ∥MN, ∴FL∥PQ∥HR, ∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA, ∵∠FGQ和∠GFA的角平分线GH、FH相交于点H, ∴∠QGH=∠FGQ,∠HFA=∠GFA, ∵∠DFE=30°, ∴∠GFA=180°−∠DFE=150°, ∴∠HFA=∠GFA=75°, ∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°, ∴∠GFL=∠GFA−∠LFA=150°−45°=105°, ∴∠RHG=∠QGH=∠FGQ=(180°−105°)=37.5°, ∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°; (4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A, ∴D′A=DF,DD′=EE′=AF=5cm, ∵DE+EF+DF=35cm, ∴DE+EF+D′A+AF+DD′=35+10=45(cm), 即四边形DEAD′的周长为45cm; (5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°, 分三种情况: BC∥DE时,如图5,此时AC∥DF, ∴∠CAE=∠DFE=30°, ∴3t=30, 解得:t=10; BC∥EF时,如图6, ∵BC∥EF, ∴∠BAE=∠B=45°, ∴∠BAM=∠BAE+∠EAM=45°+45°=90°, ∴3t=90, 解得:t=30; BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R, ∵∠DRM=∠EAM+∠DFE=45°+30°=75°, ∴∠BKA=∠DRM=75°, ∵∠ACK=180°−∠ACB=90°, ∴∠CAK=90°−∠BKA=15°, ∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°, ∴3t=120, 解得:t=40, 综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行. 【点睛】 本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服