1、人教版八年级下册数学期末试卷达标训练题(Word版含答案)一、选择题1若能使二次根式有意义,则这个二次根式是( )ABCD2若线段a,b,c首尾顺次连接后能组成直角三角形,则它们的长度比可能为()A2:3:4B3:4:5C4:5:6D5:6:73在四边形中,若四边形是平行四边形,则还需要满足( )ABCD4小雨同学参加了学校举办的“抗击,你我同行”主题演讲比赛,她的演讲内容语言表达和形象风度三项得分分别为80分,90分,85分,若这三项依次按照50%,30%,20%的百分比确定成绩,则她的成绩是( )A82分B83分C84分D85分5如图所示,正方形ABCD的边长为4,点E为线段BC上一动点,
2、连结AE,将AE绕点E顺时针旋转90至EF,连结BF,取BF的中点M,若点E从点B运动至点C,则点M经过的路径长为()A2BCD46如图,在菱形纸片ABCD中,A=60,点E在BC边上,将菱形纸片ABCD沿DE折叠,点C落在AB边的垂直平分线上的点C处,则DEC的大小为()A30B45C60D757如图,矩形ABCD中,AB7,BC6,点F是BC的中点,点E在AB上,且AE2,连接DF,CE,点G、H分别是DF,CE的中点,连接GH,则线段GH的长为( )A2BCD8如图,若正比例函数ykx图象与四条直线x1,x2,y1,y2相交围成的正方形有公共点,则k的取值范围是()Ak2BkC0kDk2
3、二、填空题9若式子在实数范围内有意义,则的取值范围是_10如图,菱形周长为40,对角线,则菱形的面积为_11如图,则阴影小长方形的面积S_12如图,点在矩形的对角线上,且不与点重合,过点分别作边的平行线,交两组对边于点和四边形和四边形都是矩形并且面积分别为S1,S2,则S1,S2之间的关系为_13已知一次函数的图象过点,那么此一次函数的解析式为_14在矩形ABCD中,B的平分线BE与AD交于点E,BED的平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=_.(结果保留根号)15如图,在平面直角坐标系中,函数y2x和yx的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交ll于点A
4、1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点作y轴的垂线交l2于点A4,依次进行下去则点A4的坐标为_;点的坐标为_;点A2021的坐标为_16甲、乙两人分别加工100个零件,甲第1个小时加工了10个零件,之后每小时加工30个零件,乙在甲加工前已经加工了40个零件,在甲加工3小时后乙开始追赶甲,结果两人同时完成任务设甲、乙两人各自加工的零件数为y(个),甲加工零件的时间为x(时),y与x之间的函数图象如图所示,当甲、乙两人相差15个零件时,甲加工零件的时间为_三、解答题17计算:(1)(2)18一架长为米的梯子,顶端靠在墙上,梯子底端到墙的距离米(1)求的长
5、;(2)如图梯子的顶端沿墙向下滑动米,问梯子的底端向外移动了多少米?19如图:正方形网格中每个小方格的边长为1,且点A、B、C均为格点(1)通过计算判断ABC的形状;(2)求AB边上的高20在矩形中,对角线、交于点,一直线过点分别交、于点、,且,求证:四边形为菱形21观察请你观察下列式子的特点,并直接写出结果: ; ; ;发现根据你的阅读回答下列问题:(1)请根据上面式子的规律填空: (为正整数);(2)请证明(1) 中你所发现的规律应用请直接写出下面式子的结果: 22在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度与燃烧时间的关系如图所示其中甲蜡烛燃烧前的高度是,乙蜡烛燃烧前的高度是
6、,请根据图象所提供的信息解答下列问题:(1)甲、乙两根蜡烛从点燃到燃尽所用的时间分别是 ;(2)分别求甲、乙两根蜡烛燃烧时,与之间的函数关系式;(3)当为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等(不考虑都燃尽时的情况)?在什么时间段内甲蜡烛比乙蜡烛高?在什么时间段内甲蜡烛比乙蜡烛低?23如图,四边形是边长为的正方形,为线段上一动点,垂足为(1)如图,连接交于点,若,求的长;(2)如图,点在的延长线上,点在上运动时,满足,连接,判断,的数量关系并说明理由;如图,若为的中点,直接写出的最小值为 24如图1,在平面直角坐标系xOy中,直线AB交y轴于点A(0,3),交x轴于点B(4,0)(1)求
7、直线AB的函数表达式;(2)如图2,在线段OB上有一点C(点C不与点O、点B重合),将AOC沿AC折叠,使点O落在AB上,记作点D,在BD上方,以BD为斜边作等腰直角三角形BDF,求点F的坐标;(3)在(2)的条件下,如图3,在平面内是否存在一点E,使得以点A,B,E为顶点的三角形与ABC全等(点E不与点C重合),若存在,请直接写出满足条件的所有点E的坐标,若不存在,请说明理由25在平面直角坐标中,四边形OCNM为矩形,如图1,M点坐标为(m,0),C点坐标为(0,n),已知m,n满足(1)求m,n的值;(2)如图1,P,Q分别为OM,MN上一点,若PCQ45,求证:PQOP+NQ;如图2,S
8、,G,R,H分别为OC,OM,MN,NC上一点,SR,HG交于点D若SDG135,则RS_;(3)如图3,在矩形OABC中,OA5,OC3,点F在边BC上且OFOA,连接AF,动点P在线段OF是(动点P与O,F不重合),动点Q在线段OA的延长线上,且AQFP,连接PQ交AF于点N,作PMAF于M试问:当P,Q在移动过程中,线段MN的长度是否发生变化?若不变求出线段MN的长度;若变化,请说明理由26某数学活动小组在一次活动中,对一个数学问题作如下研究:(1)如图1,ABC中分别以AB,AC为边向外作等腰ABE和等腰ACD使AEAB,ADAC,BAECAD,连接BD,CE,试猜想BD与CE的大小关
9、系,并说明理由(2)如图2,ABC中分别以AB,AC为边向外作等腰RtABE和等腰RtACD,EABCAD90,连接BD,CE,若AB4,BC2,ABC45,求BD的长(3)如图3,四边形ABCD中,连接AC,CDBC,BCD60,BAD30,AB15,AC25,求AD的长【参考答案】一、选择题1C解析:C【分析】根据二次根式有意义的条件逐项分析即可【详解】A. 要使有意义,则,解得,该项不符合题意;B. 要使有意义,则,解得,该项不符合题意; C.要使有意义,则,解得,能使二次根式有意义,该项符合题意; D. 要使有意义,则,解得,该项不符合题意;故选C【点睛】本题考查了二次根式有意义的条件
10、,理解二次根式有意义的条件是解题的关键2B解析:B【分析】根据勾股定理的逆定理对各选项进行逐一判断即可【详解】解:A、22+3242,不能够成直角三角形,故本选项不符合题意;B、32+4252,能够成直角三角形,故本选项符合题意;C、52+4262,不能够成直角三角形,故本选项不符合题意;D、52+6272,不能够成直角三角形,故本选项不符合题意故选:B【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2c2,那么这个三角形就是直角三角形3C解析:C【解析】【分析】根据四边形已经具备一组对边平行,确定再加上另一组对边平行即可【详解】解:在四边形中,四边形是平行四边
11、形,故选:C【点睛】本题考查了平行四边形的判定,解题的关键是掌握平行四边形的判定定理,难度不大4C解析:C【解析】【分析】根据加权平均数的计算公式求解即可,加权平均数计算公式为:,其中代表各数据的权.【详解】依题意,故选C【点睛】本题考查了加权平均数,掌握是加权平均数的计算公式解题的关键5B解析:B【分析】已知EFAE,当E点在线段BC上运动到两端时,正好是M点运动的两个端点,由此可以判断M点的运动轨迹是BC、CD中点的连线长.【详解】解:取BC、CD的中点G、H,连接GH,连接BDGH为BCD的中位线,即将AE绕点E顺时针旋转90至EF,EFAE,当E点在B处时,M点在BC的中点G处,当E点
12、在C点处时,M点在CD中点处,点M经过的路径长为GH的长,正方形ABCD的边长为4,故选B【点睛】本题主要考查了正方形的性质,勾股定理和中位线定理,解题的关键在于找到M点的运动轨迹.6D解析:D【解析】【分析】连接,由菱形的性质及,得到为等边三角形,为的中点,利用三线合一得到为角平分线,得到,进而求出,由折叠的性质得到,利用三角形的内角和定理即可求出所求角的度数【详解】解:连接,如图所示:四边形为菱形,为等边三角形,为的中点,为的平分线,即,由折叠的性质得到,在中,故选:D【点睛】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关
13、键7D解析:D【解析】【分析】取中点,连接,过作于,根据已知条件以及三角形中位线定理,求得,进而勾股定理解决问题【详解】如图,取中点,连接,过作于,四边形是矩形,,,四边形是平行四边形,点F是BC的中点,AB7,BC6,四边形是矩形,点G、H分别是DF,CE的中点,交于点,,,,点H是CE的中点,点F是BC的中点,在中,故选D【点睛】本题考查了矩形的性质,三角形中位线定理,勾股定理,添加辅助,构造是解题的关键8D解析:D【分析】如图,可知当直线在过点和点两点之间的时候满足条件,把、两点分别代入可求得的最小值和最大值,可求得答案【详解】解:直线与正方形有公共点,直线在过点和点两直线之间之间,如图
14、,可知,当直线过点时,代入可得,解得,当直线过点时,代入可得,解得,的取值范围为:,故选【点睛】本题主要考查一次函数图象点的坐标,由条件得出直线在过和两点间的直线是解题的关键,注意数形结合思想的应用二、填空题9【解析】【分析】利用分式和二次根式有意义的条件确定关于的不等式,从而确定答案【详解】解:根据题意得:且,解得:,故答案为:【点睛】考查了二次根式及分式有意义的条件,属于基础题,比较简单10A解析:96【解析】【分析】由菱形的周长为40,对角线,可求得另一对角线的长,这个菱形的面积即可求解【详解】解:菱形ABCD的周长为40,菱形的边长BC=10,BD=12,OB=BD=6,OC=,BD=
15、2OB=16,S菱形ABCD=ACBD=故答案为:96【点睛】本题考查了菱形的性质、菱形面积的计算方法、勾股定理的应用,熟练掌握菱形的面积等于两条对角线长乘积的一半是解决问题的关键1130【解析】【分析】由勾股定理求出小长方形的长,再由长方形的面积公式进行计算【详解】由勾股定理得:=10,阴影小长方形的面积S=310=30;故答案是:30【点睛】考查了勾股定理;解题关键是利用勾股定理求出小长方形的长12S1=S2【分析】由矩形的性质找出,结合对边互相平行即可证出四边形和四边形都是矩形,再根据矩形的性质可得出三对三角形的面积相等,由此即可得结果【详解】解:四边形为矩形,又,四边形和四边形都是矩形
16、,四边形为矩形,四边形和四边形也是矩形,故答案为:【点睛】本题考查了矩形的性质与判定,掌握矩形的性质与判定是解题的关键13【分析】用待定系数法即可得到答案.【详解】解:把代入得,解得,所以一次函数解析式为故答案为【点睛】本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法.14E解析:【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据EFDGFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可【详解】延长EF和BC,交于点G矩形ABCD中,B的角平分线BE与AD交于点E,A
17、BE=AEB=45,AB=AE=9,直角三角形ABE中,BE=9,又BED的角平分线EF与DC交于点F,BEG=DEFADBC,G=DEF,BEG=G,BG=BE=9由G=DEF,EFD=GFC,可得EFDGFC,.设CG=x,DE=2x,则AD=9+2x=BCBG=BC+CG,9=9+2x+x,解得x=3-3,BC=9+2(3-3)=6+3故答案为6+3考点:矩形的性质;等腰三角形的判定;相似三角形的判定与性质15(4,4) (8,8) (21010,21011) 【分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出解析:(
18、4,4) (8,8) (21010,21011) 【分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合6=14+2;2021=5054+1即可找出点A2021的坐标【详解】解:观察,发现规律:A1(1,2),A2(-2,2),A3(-2,-4),A4(4,-4),A5(4,8), “A4n+1(22n,22n+1),A4n+2(-22n
19、+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,6=14+2,A6(8,8)2021=5054+1, A2021的坐标为(21010,21011) 故答案为:(4,4); (8,8);(21010,21011)【点睛】本题考查了一次函数图象上点的坐标特征以及规律型中坐标的变化,解题的关键是找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”16或或【分析】结合题意,首先计算得甲加工到100个零件
20、需要的时间、乙在3小时后的每小时加工零件数;再根据一次函数的性质,分别得甲、乙两人各自加工的零件数和加工零件的时间的函数解析式;再结合函数图像解析:或或【分析】结合题意,首先计算得甲加工到100个零件需要的时间、乙在3小时后的每小时加工零件数;再根据一次函数的性质,分别得甲、乙两人各自加工的零件数和加工零件的时间的函数解析式;再结合函数图像,通过列一元一次方程并求解,即可得到答案【详解】根据题意,甲加工到100个零件,需要的时间为:(小时)甲加工零件的时间(时)甲加工的零件数为,即乙在甲加工前已经加工了40个零件,在甲加工3小时后乙开始追赶甲,结果两人同时完成任务乙在3小时后,每小时加工零件数
21、为:(个)乙加工的零件数为,即甲、乙两人相差15个零件,分甲比乙少15个零件和甲比乙多15个零件两种情况;根据y与x之间的函数图象,当甲比乙少15个零件时,得:;当甲比乙多15个零件时,分和两种情况;当时,得 当时,;故答案为:或或【点睛】本题考查了一次函数、一元一次方程的知识;解题的关键是熟练掌握一次函数的性质,从而完成求解三、解答题17(1)6;(2)-1【分析】(1)将二次根式的系数相乘,将二次根式相乘,再化简即可得到答案;(2)根据除法法则和乘法法则计算二次根式的乘除法,再将结果相加减即可【详解】(1)(2)解析:(1)6;(2)-1【分析】(1)将二次根式的系数相乘,将二次根式相乘,
22、再化简即可得到答案;(2)根据除法法则和乘法法则计算二次根式的乘除法,再将结果相加减即可【详解】(1)(2)【点睛】此题考查二次根式的计算,正确掌握二次根式的乘除法法则,二次根式混合运算法则,以及二次根式的性质化简二次根式是解题的关键18(1)8米;(2)米【分析】(1)直接利用勾股定理得出BC的长;(2)在CED中,再利用勾股定理计算出CE的长,进而可得AE的长【详解】解:(1)一架长米的梯子,顶端靠在墙上,梯子底端解析:(1)8米;(2)米【分析】(1)直接利用勾股定理得出BC的长;(2)在CED中,再利用勾股定理计算出CE的长,进而可得AE的长【详解】解:(1)一架长米的梯子,顶端靠在墙
23、上,梯子底端到墙的距离米,C=90,答:的长为米(2),又C=90,答:梯子的底端向外移动了米【点睛】此题主要考查了勾股定理的应用,正确应用勾股定理是解题关键19(1)ABC是直角三角形;(2)AB边上的高2【解析】【分析】(1)由勾股定理和勾股定理的逆定理即可得出结论;(2)由三角形的面积即可得出结果【详解】解:(1)由勾股定理得:AC2解析:(1)ABC是直角三角形;(2)AB边上的高2【解析】【分析】(1)由勾股定理和勾股定理的逆定理即可得出结论;(2)由三角形的面积即可得出结果【详解】解:(1)由勾股定理得:AC242+2220,BC222+125,AB232+4225,AC2+BC2
24、AB2,ABC是直角三角形,ACB90;(2)AC,BC,ABC是直角三角形,AB边上的高【点睛】此题主要考查了勾股定理以及勾股定理逆定理,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形20见解析【分析】根据矩形的性质,可证得,从而得到四边形为平行四边形,再由勾股定理,可得到,即可求证【详解】证明:矩形,在和中,又,四边形为平行四边形解析:见解析【分析】根据矩形的性质,可证得,从而得到四边形为平行四边形,再由勾股定理,可得到,即可求证【详解】证明:矩形,在和中,又,四边形为平行四边形,矩形,又,四边形为菱形【点睛】本题主要考查了矩形的
25、性质,菱形的判定,勾股定理,熟练掌握矩形的性质定理,菱形的判定定理是解题的关键21观察,;发现(1)或;(2)证明见解析;应用或【解析】【分析】(1)计算题目中结果,并根据计算过程和结果,总结得到一般规律,作出猜想,并对猜想进行计算,即可进行证明;(2)运解析:观察,;发现(1)或;(2)证明见解析;应用或【解析】【分析】(1)计算题目中结果,并根据计算过程和结果,总结得到一般规律,作出猜想,并对猜想进行计算,即可进行证明;(2)运用(1)中发现规律,进行计算即可.【详解】观察,发现(1)或(2)左为正整数,左右应用答案为:或.【点睛】(1)此类规律探究问题一定要结合式子特点和数的规律进行探究
26、,类比;(2)此类题目往往无法直接进行计算,一般要根据规律进行变形,往往会消去部分中间项,实现简化运算目的.22(1),;(2),;(3)当时,甲、乙两根蜡烛在燃烧过程中的高度相等;当时,甲蜡烛比乙蜡烛高,当时,甲蜡烛比乙蜡烛低【分析】(1)根据函数图象可以解答本题;(2)先设出甲、乙两根蜡烛燃烧时,解析:(1),;(2),;(3)当时,甲、乙两根蜡烛在燃烧过程中的高度相等;当时,甲蜡烛比乙蜡烛高,当时,甲蜡烛比乙蜡烛低【分析】(1)根据函数图象可以解答本题;(2)先设出甲、乙两根蜡烛燃烧时,y与x之间的函数解析式,然后根据函数图象中的数据即可求得相应的函数解析式;(3)根据题意,令(2)中的
27、两个函数解析式的值相等,即可解答本题【详解】解:(1)由图象可知,甲、乙两根蜡烛燃烧前的高度分别是从点燃到烧尽所用小时分别是故答案为:;(2)设甲蜡烛燃烧时,y与x之间的函数解析式即甲蜡烛燃烧时,y与x之间的函数解析式设乙蜡烛燃烧时,y与x之间的函数解析式即乙蜡烛燃烧时,y与x之间的函数解析式y=-10x+25;,;(3)由得即当时,甲、乙两根蜡烛在燃烧过程中的高度相等;观察图像可知,当时,甲蜡烛比乙蜡烛高,当时,甲蜡烛比乙蜡烛低【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用数形结合的思想解答23(1);(2)DG=BF,证明见解析;(3)【分析】(1)如
28、图1,过点作于点,先根据正方形性质和三角形内角和定理得出:,设,则,运用勾股定理即可求出答案;(2)如图2,过点作于点,设,则,解析:(1);(2)DG=BF,证明见解析;(3)【分析】(1)如图1,过点作于点,先根据正方形性质和三角形内角和定理得出:,设,则,运用勾股定理即可求出答案;(2)如图2,过点作于点,设,则,运用勾股定理即可证得结论;如图3,取、的中点、,延长至,使,延长至,使,连接,过点作,延长交于,先证得,再证得四边形是平行四边形,得出当、三点共线时,最小,故当、三点共线时,最小,即最小,再运用勾股定理计算即可【详解】解:(1)如图1,过点作于点,四边形是边长为2的正方形,即,
29、又,设,则,由勾股定理得,又,即,中,由勾股定理得:;(2),理由如下:如图2,过点作于点,设,则,四边形是边长为2的正方形,点在的延长线上,在和中,分别由勾股定理得:,;如图3,取、的中点、,延长至,使,延长至,使,连接,过点作,延长交于,为中点,、分别是、的中点,在和中,又,四边形是平行四边形,当、三点共线时,最小,当、三点共线时,最小,即最小,此时,的最小值为,故答案为:【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,直角三角形性质,勾股定理,平移的运用,平行四边形的判定与性质等知识,解题的关键是正确利用直角三角形斜边上中线等于斜边一半和平移,将求的最小值转化为
30、两点之间线段最短来解决,属于中考常考题型24(1);(2);(3)或或【解析】【分析】(1)直接利用待定系数法,即可得出结论;(2)先求出AD3,AB5,进而求出点D的坐标,再构造出BMFFND,得出BMFN,FMDN,解析:(1);(2);(3)或或【解析】【分析】(1)直接利用待定系数法,即可得出结论;(2)先求出AD3,AB5,进而求出点D的坐标,再构造出BMFFND,得出BMFN,FMDN,设F(m,n),进而建立方程组求解,即可得出结论;(3)分两种情况,当时,利用中点坐标公式求解,即可得出结论;当时,当点E在AB上方时,根据AEBC,即可得出结论;当点E在AB下方时,过点作轴于,过
31、点作轴,过点作,证明,即可得出结论【详解】(1)设直线的函数表达式为,直线AB交y轴于点A(0,3),交x轴于点B(4,0),直线的函数表达式为;(2)如图,过点分别引轴的垂线,交轴于两点, 点A(0,3),点B(-4,0),OA=3,OB=4,AB=5,由折叠知,AD=OA=3,设,解得:在上,解得,过点F作FMx轴于M,延长HD交FM于N,BMF=FND=90,BFM+FBM=90,BFD是等腰直角三角形,BF=DF,BFD=90,BFM+DFN=90,FBM=DFN,BMFFND(AAS),BM=FN,FM=DN,设F(m,n),则;(3)设OC=a,则BC=4-a,由折叠知,BDC=A
32、DC=AOC=90,CD=OC=a,在RtBDC中,a=,点A,B,E为顶点的三角形与ABC全等,当ABCABE时,BE=BC,ABC=ABE,连接CE交AB于D,则CD=ED,CDAB,由(1)知, 设E(b,c),;当ABCBAE时,当点E在AB上方时,AC=BE,BC=AE,AEBC,;当点E在AB下方时,AC=BE,BC=AE,当时,,,过点作轴于,过点作轴,过点作,,,即,点,,=,满足条件的点E的坐标为或或【点睛】本题考查了待定系数法,折叠的性质,等腰直角三角形的性质,全等三角形的判定和性质,平移的性质,勾股定理,中点坐标公式,构造出全等三角形,分类讨论是解题的关键25(1)m5,
33、n=5;(2)证明见解析;(3)MN的长度不会发生变化,它的长度为【分析】(1)利用非负数的性质即可解决问题(2)作辅助线,构建两个三角形全等,证明COECNQ解析:(1)m5,n=5;(2)证明见解析;(3)MN的长度不会发生变化,它的长度为【分析】(1)利用非负数的性质即可解决问题(2)作辅助线,构建两个三角形全等,证明COECNQ和ECPQCP,由PEPQOE+OP,得出结论;作辅助线,构建平行四边形和全等三角形,可得CSRE和CFGH,则CESR,CFGH,证明CENCEO和ECFECF,得EFEF,设ENx,在RtMEF中,根据勾股定理列方程求出EN的长,再利用勾股定理求CE,则SR
34、与CE相等,所以SR ;(3)在(1)的条件下,当P、Q在移动过程中线段MN的长度不会发生变化,求出MN的长即可;如图4,过P作PDOQ,证明PDF是等腰三角形,由三线合一得:DMFD,证明PNDQNA,得DNAD,则MNAF,求出AF的长即可解决问题【详解】解:(1) ,又0,|5m|0,n50,5m0,m5,n=5(2)如图1中,在PO的延长线上取一点E,使NQOE,CNOMOCMN,COM90,四边形OMNC是正方形,COCN,EOCN90,COECNQ(SAS),CQCE,ECOQCN,PCQ45,QCN+OCP904545,ECPECO+OCP45,ECPPCQ,CPCP,ECPQC
35、P(SAS),EPPQ,EPEO+OPNQ+OP,PQOP+NQ如图2中,过C作CESR,在x轴负半轴上取一点E,使OEEN,得CSRE,且CENCEO,则CESR,过C作CFGH交OM于F,连接FE,得CFGH,则CFGH,SDG135,SDH18013545,FCESDH45,NCE+OCF45,CENCEO,ECOECN,CECE,ECFECO+OCF45,ECFFCE,CFCF,ECFECF(SAS),EFEF在RtCOF中,OC5,FC,由勾股定理得:OF ,FM5,设ENx,则EM5x,FEEFx+,则(x+)2()2+(5x)2,解得:x,EN,由勾股定理得:CE ,SRCE故答
36、案为(3)当P、Q在移动过程中线段MN的长度不会发生变化理由:如图3中,过P作PDOQ,交AF于DOFOA,OFAOAFPDF,PFPD,PFAQ,PDAQ,PMAF,DMFD,PDOQ,DPNPQA,PNDQNA,PNDQNA(AAS),DNAN,DNAD,MNDM+DNDF+ADAF,OFOA5,OC3,CF,BFBCCF541,AF,MNAF,当P、Q在移动过程中线段MN的长度不会发生变化,它的长度为【点睛】本题是四边形与动点问题的综合题,考查了矩形、正方形、全等三角形等图形的性质与判定,灵活运用所学知识是解答本题的关键26(1)CE=BD,见解析;(2)6;(3)20【分析】(1)证E
37、ACBAD即可;(2)证EACBAD,得BD=CE,易得EBC=90,从而在RtEBC中运用勾股定理即可求得结解析:(1)CE=BD,见解析;(2)6;(3)20【分析】(1)证EACBAD即可;(2)证EACBAD,得BD=CE,易得EBC=90,从而在RtEBC中运用勾股定理即可求得结果;(3)连接BD,把ACD绕点D顺时针旋转60得到EBD,连接AE,则可得BE=AC,ADE是等边三角形,从而易得ABAE,在RtBAE中由勾股定理可求得AE,也即AD的长【详解】(1)EAB=CADBAC+EAB=BAC+CAD即EAC=BAD在EAC和BAD中 EACBAD(SAS)CE=BD(2)EA
38、B=CAD=90BAC+EAB=BAC+CAD即EAC=BADEAB、CAD都是等腰直角三角形,且EAB=CAD=90AE=AB=4,EBA=45,AC=AD由勾股定理得: 在EAC和BAD中 EACBAD(SAS)CE=BDEBC=EBA+ABC=45+45=90在RtEBC中,由勾股定理得: BD=6(3)如图,连接BDCD=BC,BCD=60BCD是等边三角形把ACD绕点D顺时针旋转60得到EBD,点E与点A对应,连接AE则BE=AC=25,ADE是等边三角形DAE=60,AD=AEBAE=BAD+DAE=30+60=90即ABAE在RtBAE中,由勾股定理得: AD=20【点睛】本题是三角形的综合题,考查了三角形全等的判定与性质,等腰三角形的性质,等边三角形的判定与性质,勾股定理,旋转变换,第三问作旋转变换是关键,也是难点本质上来说,前两问也可看成把EAC绕A点逆时针旋转的角度一定角度而得到BAD