资源描述
人教版八年级下册数学期末试卷达标训练题(Word版含答案)
一、选择题
1.若能使二次根式有意义,则这个二次根式是( )
A. B. C. D.
2.若线段a,b,c首尾顺次连接后能组成直角三角形,则它们的长度比可能为( )
A.2:3:4 B.3:4:5 C.4:5:6 D.5:6:7
3.在四边形中,,若四边形是平行四边形,则还需要满足( )
A. B.
C. D.
4.小雨同学参加了学校举办的“抗击,你我同行”主题演讲比赛,她的演讲内容语言表达和形象风度三项得分分别为80分,90分,85分,若这三项依次按照50%,30%,20%的百分比确定成绩,则她的成绩是( )
A.82分 B.83分 C.84分 D.85分
5.如图所示,正方形ABCD的边长为4,点E为线段BC上一动点,连结AE,将AE绕点E顺时针旋转90°至EF,连结BF,取BF的中点M,若点E从点B运动至点C,则点M经过的路径长为( )
A.2 B. C. D.4
6.如图,在菱形纸片ABCD中,∠A=60°,点E在BC边上,将菱形纸片ABCD沿DE折叠,点C落在AB边的垂直平分线上的点C′处,则∠DEC的大小为( )
A.30° B.45° C.60° D.75°
7.如图,矩形ABCD中,AB=7,BC=6,点F是BC的中点,点E在AB上,且AE=2,连接DF,CE,点G、H分别是DF,CE的中点,连接GH,则线段GH的长为( )
A.2 B. C.. D.
8.如图,若正比例函数y=kx图象与四条直线x=1,x=2,y=1,y=2相交围成的正方形有公共点,则k的取值范围是( )
A.k≤2 B.k≥ C.0<k< D.≤k≤2
二、填空题
9.若式子在实数范围内有意义,则的取值范围是________.
10.如图,菱形周长为40,对角线,则菱形的面积为______.
11.如图,则阴影小长方形的面积S=_____.
12.如图,点在矩形的对角线上,且不与点重合,过点分别作边的平行线,交两组对边于点和.四边形和四边形都是矩形并且面积分别为S1,S2,则S1,S2之间的关系为__________.
13.已知一次函数的图象过点,那么此一次函数的解析式为__________.
14.在矩形ABCD中,∠B的平分线BE与AD交于点E,∠BED的平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=___________.(结果保留根号)
15.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交ll于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点作y轴的垂线交l2于点A4,…依次进行下去.则点A4的坐标为__;点的坐标为_____;点A2021的坐标为____.
16.甲、乙两人分别加工100个零件,甲第1个小时加工了10个零件,之后每小时加工30个零件,乙在甲加工前已经加工了40个零件,在甲加工3小时后乙开始追赶甲,结果两人同时完成任务.设甲、乙两人各自加工的零件数为y(个),甲加工零件的时间为x(时),y与x之间的函数图象如图所示,当甲、乙两人相差15个零件时,甲加工零件的时间为______________
三、解答题
17.计算:
(1)
(2)
18.一架长为米的梯子,顶端靠在墙上,梯子底端到墙的距离米.
(1)求的长;
(2)如图梯子的顶端沿墙向下滑动米,问梯子的底端向外移动了多少米?
19.如图:正方形网格中每个小方格的边长为1,且点A、B、C均为格点.
(1)通过计算判断△ABC的形状;
(2)求AB边上的高.
20.在矩形中,,,对角线、交于点,一直线过点分别交、于点、,且,求证:四边形为菱形.
21.[观察]请你观察下列式子的特点,并直接写出结果:
;
;
;
……
[发现]根据你的阅读回答下列问题:
(1)请根据上面式子的规律填空:
(为正整数);
(2)请证明(1) 中你所发现的规律.
[应用]请直接写出下面式子的结果:
.
22.在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度与燃烧时间的关系如图所示.其中甲蜡烛燃烧前的高度是,乙蜡烛燃烧前的高度是,请根据图象所提供的信息解答下列问题:
(1)甲、乙两根蜡烛从点燃到燃尽所用的时间分别是 ;
(2)分别求甲、乙两根蜡烛燃烧时,与之间的函数关系式;
(3)当为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等(不考虑都燃尽时的情况)?在什么时间段内甲蜡烛比乙蜡烛高?在什么时间段内甲蜡烛比乙蜡烛低?
23.如图,四边形是边长为的正方形,为线段上一动点,,垂足为.
(1)如图,连接交于点,若,求的长;
(2)如图,点在的延长线上,点在上运动时,满足,
①连接,,判断,的数量关系并说明理由;
②如图,若为的中点,直接写出的最小值为 .
24.如图1,在平面直角坐标系xOy中,直线AB交y轴于点A(0,3),交x轴于点B(﹣4,0).
(1)求直线AB的函数表达式;
(2)如图2,在线段OB上有一点C(点C不与点O、点B重合),将AOC沿AC折叠,使点O落在AB上,记作点D,在BD上方,以BD为斜边作等腰直角三角形BDF,求点F的坐标;
(3)在(2)的条件下,如图3,在平面内是否存在一点E,使得以点A,B,E为顶点的三角形与ABC全等(点E不与点C重合),若存在,请直接写出满足条件的所有点E的坐标,若不存在,请说明理由.
25.在平面直角坐标中,四边形OCNM为矩形,如图1,M点坐标为(m,0),C点坐标为(0,n),已知m,n满足.
(1)求m,n的值;
(2)①如图1,P,Q分别为OM,MN上一点,若∠PCQ=45°,求证:PQ=OP+NQ;
②如图2,S,G,R,H分别为OC,OM,MN,NC上一点,SR,HG交于点D.若∠SDG=135°,,则RS=______;
(3)如图3,在矩形OABC中,OA=5,OC=3,点F在边BC上且OF=OA,连接AF,动点P在线段OF是(动点P与O,F不重合),动点Q在线段OA的延长线上,且AQ=FP,连接PQ交AF于点N,作PM⊥AF于M.试问:当P,Q在移动过程中,线段MN的长度是否发生变化?若不变求出线段MN的长度;若变化,请说明理由.
26.某数学活动小组在一次活动中,对一个数学问题作如下研究:
(1)如图1,△ABC中分别以AB,AC为边向外作等腰△ABE和等腰△ACD使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.
(2)如图2,△ABC中分别以AB,AC为边向外作等腰Rt△ABE和等腰Rt△ACD,∠EAB=∠CAD=90°,连接BD,CE,若AB=4,BC=2,∠ABC=45゜,求BD的长.
(3)如图3,四边形ABCD中,连接AC,CD=BC,∠BCD=60°,∠BAD=30°,AB=15,AC=25,求AD的长.
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据二次根式有意义的条件逐项分析即可
【详解】
A. 要使有意义,则,解得,该项不符合题意;
B. 要使有意义,则,解得,该项不符合题意;
C.要使有意义,则,解得,能使二次根式有意义,该项符合题意;
D. 要使有意义,则,解得,该项不符合题意;
故选C
【点睛】
本题考查了二次根式有意义的条件,理解二次根式有意义的条件是解题的关键.
2.B
解析:B
【分析】
根据勾股定理的逆定理对各选项进行逐一判断即可.
【详解】
解:A、∵22+32≠42,∴不能够成直角三角形,故本选项不符合题意;
B、∵32+42=52,∴能够成直角三角形,故本选项符合题意;
C、∵52+42≠62,∴不能够成直角三角形,故本选项不符合题意;
D、∵52+62≠72,∴不能够成直角三角形,故本选项不符合题意.
故选:B.
【点睛】
本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
3.C
解析:C
【解析】
【分析】
根据四边形已经具备一组对边平行,确定再加上另一组对边平行即可.
【详解】
解:在四边形中,
,
,
,
四边形是平行四边形,
故选:C.
【点睛】
本题考查了平行四边形的判定,解题的关键是掌握平行四边形的判定定理,难度不大.
4.C
解析:C
【解析】
【分析】
根据加权平均数的计算公式求解即可,加权平均数计算公式为:,其中代表各数据的权.
【详解】
依题意,.
故选C.
【点睛】
本题考查了加权平均数,掌握是加权平均数的计算公式解题的关键.
5.B
解析:B
【分析】
已知EF⊥AE,当E点在线段BC上运动到两端时,正好是M点运动的两个端点,由此可以判断M点的运动轨迹是BC、CD中点的连线长.
【详解】
解:取BC、CD的中点G、H,连接GH,连接BD
∴GH为△BCD的中位线,即
∵将AE绕点E顺时针旋转90°至EF,
∴EF⊥AE,
当E点在B处时,M点在BC的中点G处,当E点在C点处时,M点在CD中点处,
∴点M经过的路径长为GH的长,
∵正方形ABCD的边长为4,
∴
∴,
故选B.
【点睛】
本题主要考查了正方形的性质,勾股定理和中位线定理,解题的关键在于找到M点的运动轨迹.
6.D
解析:D
【解析】
【分析】
连接,由菱形的性质及,得到为等边三角形,为的中点,利用三线合一得到为角平分线,得到,,,进而求出,由折叠的性质得到,利用三角形的内角和定理即可求出所求角的度数.
【详解】
解:连接,如图所示:
∵四边形为菱形,
∴,
∵,
∴为等边三角形,,,
∵为的中点,
∴为的平分线,即,
∴,
∴由折叠的性质得到,
在中,.
故选:D
【点睛】
此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键.
7.D
解析:D
【解析】
【分析】
取中点,连接,过作于,根据已知条件以及三角形中位线定理,求得,进而勾股定理解决问题.
【详解】
如图,取中点,连接,过作于,
四边形是矩形,
,,
四边形是平行四边形,
点F是BC的中点,AB=7,BC=6,
,
,
四边形是矩形,
,
点G、H分别是DF,CE的中点,
交于点,,
,,
点H是CE的中点,点F是BC的中点,
,
,
在中
,
故选D
【点睛】
本题考查了矩形的性质,三角形中位线定理,勾股定理,添加辅助,构造是解题的关键.
8.D
解析:D
【分析】
如图,可知当直线在过点和点两点之间的时候满足条件,把、两点分别代入可求得的最小值和最大值,可求得答案.
【详解】
解:
直线与正方形有公共点,
直线在过点和点两直线之间之间,
如图,可知,,
当直线过点时,代入可得,解得,
当直线过点时,代入可得,解得,
的取值范围为:,
故选.
【点睛】
本题主要考查一次函数图象点的坐标,由条件得出直线在过和两点间的直线是解题的关键,注意数形结合思想的应用.
二、填空题
9.
【解析】
【分析】
利用分式和二次根式有意义的条件确定关于的不等式,从而确定答案.
【详解】
解:根据题意得:且,
∴,
解得:,
故答案为:.
【点睛】
考查了二次根式及分式有意义的条件,属于基础题,比较简单.
10.A
解析:96
【解析】
【分析】
由菱形的周长为40,对角线,可求得另一对角线的长,这个菱形的面积即可求解.
【详解】
解:∵菱形ABCD的周长为40,
∴菱形的边长BC=10,
∵BD=12,
∴OB=BD=6,
∴OC=,
∴BD=2OB=16,
∴S菱形ABCD=AC•BD=.
故答案为:96.
【点睛】
本题考查了菱形的性质、菱形面积的计算方法、勾股定理的应用,熟练掌握菱形的面积等于两条对角线长乘积的一半是解决问题的关键.
11.30
【解析】
【分析】
由勾股定理求出小长方形的长,再由长方形的面积公式进行计算.
【详解】
由勾股定理得:=10,
∴阴影小长方形的面积S=3×10=30;
故答案是:30.
【点睛】
考查了勾股定理;解题关键是利用勾股定理求出小长方形的长.
12.S1=S2
【分析】
由矩形的性质找出,结合对边互相平行即可证出四边形和四边形都是矩形,再根据矩形的性质可得出三对三角形的面积相等,由此即可得结果.
【详解】
解:∵四边形为矩形,
∴.
又∵,,
∴四边形和四边形都是矩形.
∵,,四边形为矩形,
∴四边形和四边形也是矩形,
∴,,,
∴,
故答案为:.
【点睛】
本题考查了矩形的性质与判定,掌握矩形的性质与判定是解题的关键.
13.
【分析】
用待定系数法即可得到答案.
【详解】
解:把代入得,解得,
所以一次函数解析式为.
故答案为
【点睛】
本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法.
14.E
解析:
【分析】
先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.
【详解】
延长EF和BC,交于点G.
∵矩形ABCD中,∠B的角平分线BE与AD交于点E,
∴∠ABE=∠AEB=45°,
∴AB=AE=9,
∴直角三角形ABE中,BE==9,
又∵∠BED的角平分线EF与DC交于点F,
∴∠BEG=∠DEF.
∵AD∥BC,
∴∠G=∠DEF,
∴∠BEG=∠G,
∴BG=BE=9.
由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC,
∴.
设CG=x,DE=2x,则AD=9+2x=BC.
∵BG=BC+CG,
∴9=9+2x+x,解得x=3-3,
∴BC=9+2(3-3)=6+3.
故答案为6+3.
考点:矩形的性质;等腰三角形的判定;相似三角形的判定与性质.
15.(4,﹣4) (﹣8,8) (21010,21011)
【分析】
根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出
解析:(4,﹣4) (﹣8,8) (21010,21011)
【分析】
根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合6=1×4+2;2021=505×4+1即可找出点A2021的坐标.
【详解】
解:观察,发现规律:
A1(1,2),
A2(-2,2),
A3(-2,-4),
A4(4,-4),
A5(4,8),…,
∴“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,
∵6=1×4+2,
A6(﹣8,8)
∵2021=505×4+1,
∴A2021的坐标为(21010,21011).
故答案为:(4,﹣4); (﹣8,8);(21010,21011).
【点睛】
本题考查了一次函数图象上点的坐标特征以及规律型中坐标的变化,解题的关键是找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”.
16.或或
【分析】
结合题意,首先计算得甲加工到100个零件需要的时间、乙在3小时后的每小时加工零件数;再根据一次函数的性质,分别得甲、乙两人各自加工的零件数和加工零件的时间的函数解析式;再结合函数图像
解析:或或
【分析】
结合题意,首先计算得甲加工到100个零件需要的时间、乙在3小时后的每小时加工零件数;再根据一次函数的性质,分别得甲、乙两人各自加工的零件数和加工零件的时间的函数解析式;再结合函数图像,通过列一元一次方程并求解,即可得到答案.
【详解】
根据题意,甲加工到100个零件,需要的时间为:(小时)
∴甲加工零件的时间(时)
∴甲加工的零件数为,即
∵乙在甲加工前已经加工了40个零件,在甲加工3小时后乙开始追赶甲,结果两人同时完成任务
∴乙在3小时后,每小时加工零件数为:(个)
∴乙加工的零件数为,即
甲、乙两人相差15个零件,分甲比乙少15个零件和甲比乙多15个零件两种情况;
根据y与x之间的函数图象,当甲比乙少15个零件时,得:
∴;
当甲比乙多15个零件时,分和两种情况;
当时,得
∴
当时,
∴;
故答案为:或或.
【点睛】
本题考查了一次函数、一元一次方程的知识;解题的关键是熟练掌握一次函数的性质,从而完成求解.
三、解答题
17.(1)6;(2)-1
【分析】
(1)将二次根式的系数相乘,将二次根式相乘,再化简即可得到答案;
(2)根据除法法则和乘法法则计算二次根式的乘除法,再将结果相加减即可.
【详解】
(1)
(2).
解析:(1)6;(2)-1
【分析】
(1)将二次根式的系数相乘,将二次根式相乘,再化简即可得到答案;
(2)根据除法法则和乘法法则计算二次根式的乘除法,再将结果相加减即可.
【详解】
(1)
(2).
【点睛】
此题考查二次根式的计算,正确掌握二次根式的乘除法法则,二次根式混合运算法则,以及二次根式的性质化简二次根式是解题的关键.
18.(1)8米;(2)米
【分析】
(1)直接利用勾股定理得出BC的长;
(2)在△CED中,再利用勾股定理计算出CE的长,进而可得AE的长.
【详解】
解:(1)一架长米的梯子,顶端靠在墙上,梯子底端
解析:(1)8米;(2)米
【分析】
(1)直接利用勾股定理得出BC的长;
(2)在△CED中,再利用勾股定理计算出CE的长,进而可得AE的长.
【详解】
解:(1)一架长米的梯子,顶端靠在墙上,梯子底端到墙的距离米,∠C=90°,
.
答:的长为米.
(2),,
,
又∠C=90°,
,
.
答:梯子的底端向外移动了米.
【点睛】
此题主要考查了勾股定理的应用,正确应用勾股定理是解题关键.
19.(1)△ABC是直角三角形;(2)AB边上的高=2
【解析】
【分析】
(1)由勾股定理和勾股定理的逆定理即可得出结论;
(2)由三角形的面积即可得出结果.
【详解】
解:(1)由勾股定理得:AC2
解析:(1)△ABC是直角三角形;(2)AB边上的高=2
【解析】
【分析】
(1)由勾股定理和勾股定理的逆定理即可得出结论;
(2)由三角形的面积即可得出结果.
【详解】
解:(1)由勾股定理得:AC2=42+22=20,BC2=22+12=5,AB2=32+42=25,
∴AC2+BC2=AB2,
∴△ABC是直角三角形,∠ACB=90°;
(2)∵AC=,BC=,△ABC是直角三角形,
∴AB边上的高=.
【点睛】
此题主要考查了勾股定理以及勾股定理逆定理,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
20.见解析
【分析】
根据矩形的性质,可证得,从而得到四边形为平行四边形,再由勾股定理,可得到,即可求证.
【详解】
证明:∵矩形,
∴,,
∴,
在和中,
,
∴,
∴,
又∵,
∴四边形为平行四边形
解析:见解析
【分析】
根据矩形的性质,可证得,从而得到四边形为平行四边形,再由勾股定理,可得到,即可求证.
【详解】
证明:∵矩形,
∴,,
∴,
在和中,
,
∴,
∴,
又∵,
∴四边形为平行四边形,
∵矩形,
∴,,
又∵,,,
∴,
,
∴,
∴四边形为菱形.
【点睛】
本题主要考查了矩形的性质,菱形的判定,勾股定理,熟练掌握矩形的性质定理,菱形的判定定理是解题的关键.
21.[观察],,;[发现](1)或;(2)证明见解析;[应用]或.
【解析】
【分析】
(1)计算题目中结果,并根据计算过程和结果,总结得到一般规律,作出猜想,并对猜想进行计算,即可进行证明;
(2)运
解析:[观察],,;[发现](1)或;(2)证明见解析;[应用]或.
【解析】
【分析】
(1)计算题目中结果,并根据计算过程和结果,总结得到一般规律,作出猜想,并对猜想进行计算,即可进行证明;
(2)运用(1)中发现规律,进行计算即可.
【详解】
[观察],,,
[发现](1)或
(2)左
∵为正整数,
∴
∴左右
[应用]
∴答案为:或.
【点睛】
(1)此类规律探究问题一定要结合式子特点和数的规律进行探究,类比;
(2)此类题目往往无法直接进行计算,一般要根据规律进行变形,往往会消去部分中间项,实现简化运算目的.
22.(1),;(2),;(3)当时,甲、乙两根蜡烛在燃烧过程中的高度相等;当时,甲蜡烛比乙蜡烛高,当时,甲蜡烛比乙蜡烛低.
【分析】
(1)根据函数图象可以解答本题;
(2)先设出甲、乙两根蜡烛燃烧时,
解析:(1),;(2),;(3)当时,甲、乙两根蜡烛在燃烧过程中的高度相等;当时,甲蜡烛比乙蜡烛高,当时,甲蜡烛比乙蜡烛低.
【分析】
(1)根据函数图象可以解答本题;
(2)先设出甲、乙两根蜡烛燃烧时,y与x之间的函数解析式,然后根据函数图象中的数据即可求得相应的函数解析式;
(3)根据题意,令(2)中的两个函数解析式的值相等,即可解答本题.
【详解】
解:(1)由图象可知,
甲、乙两根蜡烛燃烧前的高度分别是从点燃到烧尽所用小时分别是
故答案为:;
(2)设甲蜡烛燃烧时,y与x之间的函数解析式
即甲蜡烛燃烧时,y与x之间的函数解析式
设乙蜡烛燃烧时,y与x之间的函数解析式
即乙蜡烛燃烧时,y与x之间的函数解析式y=-10x+25;
∴,;
(3)由得即当时,甲、乙两根蜡烛在燃烧过程中的高度相等;观察图像可知,当时,甲蜡烛比乙蜡烛高,当时,甲蜡烛比乙蜡烛低.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用数形结合的思想解答.
23.(1);(2)DG=BF,证明见解析;(3)
【分析】
(1)如图1,过点作于点,先根据正方形性质和三角形内角和定理得出:,,设,则,运用勾股定理即可求出答案;
(2)①如图2,过点作于点,设,则,
解析:(1);(2)DG=BF,证明见解析;(3)
【分析】
(1)如图1,过点作于点,先根据正方形性质和三角形内角和定理得出:,,设,则,运用勾股定理即可求出答案;
(2)①如图2,过点作于点,设,则,运用勾股定理即可证得结论;
②如图3,取、的中点、,延长至,使,延长至,使,连接,,过点作,延长交于,先证得,再证得四边形是平行四边形,得出当、、三点共线时,最小,故当、、三点共线时,最小,即最小,再运用勾股定理计算即可.
【详解】
解:(1)如图1,过点作于点,
四边形是边长为2的正方形,
,,,
,
,
,
,
,即,
,
又,,
,,
,,
设,则,
由勾股定理得,
又,
,
,即,
,
中,,
由勾股定理得:;
(2)①,理由如下:
如图2,过点作于点,
,
,,
,
,
,
,
设,则,,
,
四边形是边长为2的正方形,点在的延长线上,
,
在和中,,
分别由勾股定理得:
,,
,
;
②如图3,取、的中点、,延长至,使,延长至,使,连接,,过点作,延长交于,
,为中点,
,
、分别是、的中点,
,,
,
在和中,
,
,
,,
,
,
又,
四边形是平行四边形,
,,
,
当、、三点共线时,最小,
当、、三点共线时,最小,
即最小,
此时,,,
,
,,
,
,
的最小值为,
故答案为:.
【点睛】
本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,直角三角形性质,勾股定理,平移的运用,平行四边形的判定与性质等知识,解题的关键是正确利用直角三角形斜边上中线等于斜边一半和平移,将求的最小值转化为两点之间线段最短来解决,属于中考常考题型.
24.(1);(2);(3)或或
【解析】
【分析】
(1)直接利用待定系数法,即可得出结论;
(2)先求出AD=3,AB=5,进而求出点D的坐标,再构造出△BMF≌△FND,得出BM=FN,FM=DN,
解析:(1);(2);(3)或或
【解析】
【分析】
(1)直接利用待定系数法,即可得出结论;
(2)先求出AD=3,AB=5,进而求出点D的坐标,再构造出△BMF≌△FND,得出BM=FN,FM=DN,设F(m,n),进而建立方程组求解,即可得出结论;
(3)分两种情况,①当时,利用中点坐标公式求解,即可得出结论;②当时,当点E在AB上方时,根据AE∥BC,即可得出结论;③当点E在AB下方时,过点作轴于,过点作轴,过点作,证明,即可得出结论.
【详解】
(1)设直线的函数表达式为,
直线AB交y轴于点A(0,3),交x轴于点B(﹣4,0),
直线的函数表达式为;
(2)如图,过点分别引轴的垂线,交轴于两点,
∵点A(0,3),点B(-4,0),
∴OA=3,OB=4,
∴AB=5,
由折叠知,AD=OA=3,
设
,
解得:
在上,
解得,
,
过点F作FM⊥x轴于M,延长HD交FM于N,
∴∠BMF=∠FND=90°,
∴∠BFM+∠FBM=90°,
∵△BFD是等腰直角三角形,
∴BF=DF,∠BFD=90°,
∴∠BFM+∠DFN=90°,
∴∠FBM=∠DFN,
∴△BMF≌△FND(AAS),
∴BM=FN,FM=DN,
设F(m,n),
则
;
(3)设OC=a,则BC=4-a,
由折叠知,∠BDC=∠ADC=∠AOC=90°,CD=OC=a,
在Rt△BDC中,,
∴,
∴a=,
,
∵点A,B,E为顶点的三角形与△ABC全等,
①当△ABC≌△ABE'时,
∴BE'=BC,∠ABC=∠ABE',
连接CE'交AB于D,
则CD=E'D,CD⊥AB,由(1)知,
设E'(b,c),
∴
∴,
∴;
②当△ABC≌BAE时,当点E在AB上方时,
∴AC=BE,BC=AE,,
∴AE∥BC,
∴;
③当点E在AB下方时,AC=BE'',BC=AE'',
,
,
当时,
,
,,
过点作轴于,过点作轴,过点作,
,,
,
,
即,
,
,
,
点,,
,=,
,
∴,
满足条件的点E的坐标为或或.
【点睛】
本题考查了待定系数法,折叠的性质,等腰直角三角形的性质,全等三角形的判定和性质,平移的性质,勾股定理,中点坐标公式,构造出全等三角形,分类讨论是解题的关键.
25.(1)m=5,n=5;(2)①证明见解析;②;(3)MN的长度不会发生变化,它的长度为.
【分析】
(1)利用非负数的性质即可解决问题.
(2)①作辅助线,构建两个三角形全等,证明△COE≌△CNQ
解析:(1)m=5,n=5;(2)①证明见解析;②;(3)MN的长度不会发生变化,它的长度为.
【分析】
(1)利用非负数的性质即可解决问题.
(2)①作辅助线,构建两个三角形全等,证明△COE≌△CNQ和△ECP≌△QCP,由PE=PQ=OE+OP,得出结论;
②作辅助线,构建平行四边形和全等三角形,可得▱CSRE和▱CFGH,则CE=SR,CF=GH,证明△CEN≌△CE′O和△E′CF≌△ECF,得EF=E′F,设EN=x,在Rt△MEF中,根据勾股定理列方程求出EN的长,再利用勾股定理求CE,则SR与CE相等,所以SR= ;
(3)在(1)的条件下,当P、Q在移动过程中线段MN的长度不会发生变化,求出MN的长即可;如图4,过P作PD∥OQ,证明△PDF是等腰三角形,由三线合一得:DM=FD,证明△PND≌△QNA,得DN=AD,则MN=AF,求出AF的长即可解决问题.
【详解】
解:(1)∵ ,
又∵≥0,|5﹣m|≥0,
∴n﹣5=0,5﹣m=0,
∴m=5,n=5.
(2)①如图1中,在PO的延长线上取一点E,使NQ=OE,
∵CN=OM=OC=MN,∠COM=90°,
∴四边形OMNC是正方形,
∴CO=CN,
∵∠EOC=∠N=90°,
∴△COE≌△CNQ(SAS),
∴CQ=CE,∠ECO=∠QCN,
∵∠PCQ=45°,
∴∠QCN+∠OCP=90°﹣45°=45°,
∴∠ECP=∠ECO+∠OCP=45°,
∴∠ECP=∠PCQ,
∵CP=CP,
∴△ECP≌△QCP(SAS),
∴EP=PQ,
∵EP=EO+OP=NQ+OP,
∴PQ=OP+NQ.
②如图2中,过C作CE∥SR,在x轴负半轴上取一点E′,使OE′=EN,得▱CSRE,且△CEN≌△CE′O,则CE=SR,
过C作CF∥GH交OM于F,连接FE,得▱CFGH,则CF=GH=,
∵∠SDG=135°,
∴∠SDH=180°﹣135°=45°,
∴∠FCE=∠SDH=45°,
∴∠NCE+∠OCF=45°,
∵△CEN≌△CE′O,
∴∠E′CO=∠ECN,CE=CE′,
∴∠E′CF=∠E′CO+∠OCF=45°,
∴∠E′CF=∠FCE,
∵CF=CF,
∴△E′CF≌△ECF(SAS),
∴E′F=EF
在Rt△COF中,OC=5,FC=,
由勾股定理得:OF= =,
∴FM=5﹣=,
设EN=x,则EM=5﹣x,FE=E′F=x+,
则(x+)2=()2+(5﹣x)2,
解得:x=,
∴EN=,
由勾股定理得:CE= =,
∴SR=CE=.
故答案为.
(3)当P、Q在移动过程中线段MN的长度不会发生变化.
理由:如图3中,过P作PD∥OQ,交AF于D.
∵OF=OA,
∴∠OFA=∠OAF=∠PDF,
∴PF=PD,
∵PF=AQ,
∴PD=AQ,
∵PM⊥AF,
∴DM=FD,
∵PD∥OQ,
∴∠DPN=∠PQA,
∵∠PND=∠QNA,
∴△PND≌△QNA(AAS),
∴DN=AN,
∴DN=AD,
∴MN=DM+DN=DF+AD=AF,
∵OF=OA=5,OC=3,
∴CF=,
∴BF=BC﹣CF=5﹣4=1,
∴AF=,
∴MN=AF=,
∴当P、Q在移动过程中线段MN的长度不会发生变化,它的长度为.
【点睛】
本题是四边形与动点问题的综合题,考查了矩形、正方形、全等三角形等图形的性质与判定,灵活运用所学知识是解答本题的关键.
26.(1)CE=BD,见解析;(2)6;(3)20
【分析】
(1)证△EAC≌△BAD即可;
(2)证△EAC≌△BAD,得BD=CE,易得∠EBC=90゜,从而在Rt△EBC中运用勾股定理即可求得结
解析:(1)CE=BD,见解析;(2)6;(3)20
【分析】
(1)证△EAC≌△BAD即可;
(2)证△EAC≌△BAD,得BD=CE,易得∠EBC=90゜,从而在Rt△EBC中运用勾股定理即可求得结果;
(3)连接BD,把△ACD绕点D顺时针旋转60゜得到△EBD,连接AE,则可得BE=AC,△ADE是等边三角形,从而易得AB⊥AE,在Rt△BAE中由勾股定理可求得AE,也即AD的长.
【详解】
(1)∵∠EAB=∠CAD
∴∠BAC+∠EAB=∠BAC+∠CAD
即∠EAC=∠BAD
在△EAC和△BAD中
∴△EAC≌△BAD(SAS)
∴CE=BD
(2)∵∠EAB=∠CAD=90゜
∴∠BAC+∠EAB=∠BAC+∠CAD
即∠EAC=∠BAD
∵△EAB、△CAD都是等腰直角三角形,且∠EAB=∠CAD=90゜
∴AE=AB=4,∠EBA=45゜,AC=AD
∴由勾股定理得:
在△EAC和△BAD中
∴△EAC≌△BAD(SAS)
∴CE=BD
∵∠EBC=∠EBA+∠ABC=45゜+45゜=90゜
∴在Rt△EBC中,由勾股定理得:
∴BD=6
(3)如图,连接BD
∵CD=BC,∠BCD=60゜
∴△BCD是等边三角形
把△ACD绕点D顺时针旋转60゜得到△EBD,点E与点A对应,连接AE
则BE=AC=25,△ADE是等边三角形
∴∠DAE=60゜,AD=AE
∴∠BAE=∠BAD+∠DAE=30゜+60゜=90゜
即AB⊥AE
在Rt△BAE中,由勾股定理得:
∴AD=20
【点睛】
本题是三角形的综合题,考查了三角形全等的判定与性质,等腰三角形的性质,等边三角形的判定与性质,勾股定理,旋转变换,第三问作旋转变换是关键,也是难点.本质上来说,前两问也可看成把△EAC绕A点逆时针旋转的角度一定角度而得到△BAD.
展开阅读全文