资源描述
八年级上学期压轴题数学检测试题解析(一)
1.已知,如图1,射线分别与直线相交于两点,的平分线与直线相交于点,射线交于点,设,,且.
(1) ______°,______°;直线与的位置关系是______;
(2)如图2,若点是射线上任意一点,且,试找出与之间存在的数量关系,证明你的结论;
(3)若将图中的射线绕着端点逆时针方向旋转(如图3),分别与相交于点和时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由.
2.如图1,在平面直角坐标系中,AO=AB,∠BAO=90°,BO=8cm,动点D从原点O出发沿x轴正方向以acm/s的速度运动,动点E也同时从原点O出发在y轴上以bcm/s的速度运动,且a,b满足关系式a2+b2﹣4a﹣2b+5=0,连接OD,OE,设运动的时间为t秒.
(1)求a,b的值;
(2)当t为何值时,△BAD≌△OAE;
(3)如图2,在第一象限存在点P,使∠AOP=30°,∠APO=15°,求∠ABP.
3.如图1,在平面直角坐标系中,点A、B分别在x、y轴上,以AB为边作等腰直角三角形ABC,使,点C在第一象限.
(1)若点A(a,0),B(0,b),且a、b满足,则______,_____,点C的坐标为_________;
(2)如图2,过点C作轴于点D,BE平分,交x轴于点E,交CD于点F,交AC于点G,求证:CG垂直平分EF;
(3)试探究(2)中OD,OE与DF之间的关系,并说明理由.
4.阅读理解题:
定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘、除运算与代数式的运算类似.
例如:计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i;
(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;
根据以上信息,完成下列问题:
(1)填空:i3= ,i4= ,i+i2+i3+…+i2021= ;
(2)计算:(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i);
(3)已知a+bi=(a,b为实数),求的最小值.
5.如图,已知中,,,点是的中点,如果点在线段上以的速度由点向点移动,同时点在线段上由点向点以的速度移动,若、同时出发,当有一个点移动到点时,、都停止运动,设、移动时间为.
(1)求的取值范围.
(2)当时,问与是否全等,并说明理由.
(3)时,若为等腰三角形,求的值.
6.如图,△ABC是等边三角形,点D、E分别是射线AB、射线CB上的动点,点D从点A出发沿射线AB移动,点E从点B出发沿BG移动,点D、点E同时出发并且运动速度相同.连接CD、DE.
(1)如图①,当点D移动到线段AB的中点时,求证:DE=DC.
(2)如图②,当点D在线段AB上移动但不是中点时,试探索DE与DC之间的数量关系,并说明理由.
(3)如图③,当点D移动到线段AB的延长线上,并且ED⊥DC时,求∠DEC度数.
7.在△ABC中,∠ACB=90°,过点C作直线l∥AB,点B与点D关于直线l对称,连接BD交直线于点P,连接CD.点E是AC上一动点,点F是CD上一动点,点E从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C.点F从D点出发,以每秒2cm的速度沿D→C→B→C→D路径运动,终点为D.点E、F同时开始运动,第一个点到达终点时第二个点也停止运动.
(1)当AC=BC时,试证明A、C、D三点共线;(温馨提示:证明∠ACD是平角)
(2)若AC=10cm,BC=7cm,设运动时间为t秒,当点F沿D→C方向时,求满足CE=2CF时t的值;
(3)若AC=10cm,BC=7cm,过点E、F分别作EM、FN垂直直线l于点M、N,求所有使△CEM≌△CFN成立的t的值.
8.问题引入:
(1)如图1,在中,点O是和平分线的交点,若,则______(用表示):如图2,,,,则______(用表示);
拓展研究:
(2)如图3,,,,猜想度数(用表示),并说明理由;
(3)BO、CO分别是的外角、的n等分线,它们交于点O,,,,请猜想______(直接写出答案).
【参考答案】
2.(1)30,30,AB//CD;(2)+=180°,证明见解析;(3)不变,.
【分析】(1)利用非负数的性质可知:α=β=40°,推出∠EMF=∠MFN即可解决问题;
(2)结论:∠FMN+∠
解析:(1)30,30,AB//CD;(2)+=180°,证明见解析;(3)不变,.
【分析】(1)利用非负数的性质可知:α=β=40°,推出∠EMF=∠MFN即可解决问题;
(2)结论:∠FMN+∠GHF=180°.只要证明GH∥PN即可解决问题;
(3)结论:的值不变,=2.如图3中,作∠PEM1的平分线交M1Q的延长线于R.只要证明∠R=∠FQM1,∠FPM1=2∠R即可;
【详解】解:(1)∵,
∴60-2α=0,β-30=0,
∴α=β=30°,
∴∠PFM=∠MFN=30°,∠EMF=30°,
∴∠EMF=∠MFN,
∴AB∥CD;
(2)结论:∠FMN+∠GHF=180°,
理由如下:如图2中,
∵AB∥CD,
∴∠MNF=∠PME,
∵∠MGH=∠MNF,
∴∠PME=∠MGH,
∴GH∥PN,
∴∠GHM=∠FMN,
∵∠GHF+∠GHM=180°,
∴∠FMN+∠GHF=180°;
(3)的值不变,=2.
理由如下:如图3中,作∠PEM1的平分线交M1Q的延长线于R,
∵AB∥CD,
∴∠PEM1=∠PFN,
∵∠PER=∠PEM1,∠PFQ=∠PFN,
∴∠PER=∠PFQ,
∴ER∥FQ,
∴∠FQM1=∠R,
设∠PER=∠REB=x,∠PM1R=∠RM1B=y,
则有:,可得∠EPM1=2∠R,
∴∠EPM1=2∠FQM1,
∴=2.
【点睛】本题考查几何变换综合题、平行线的判定和性质、角平分线的定义、非负数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造平行线解决问题.
3.(1)a=2,b=1;(2)t=或t=8;(3)∠ABP=105°.
【分析】(1)将a2+b2﹣4a﹣2b+5=0用配方法得出(a﹣2)2+(b﹣1)2=0,利用非负数的性质,即可得出结论;
解析:(1)a=2,b=1;(2)t=或t=8;(3)∠ABP=105°.
【分析】(1)将a2+b2﹣4a﹣2b+5=0用配方法得出(a﹣2)2+(b﹣1)2=0,利用非负数的性质,即可得出结论;
(2)先由运动得出BD=|8﹣2t|,再由全等三角形的性质的出货BD=OE,建立方程求解即可得出结论.
(3)先判断出△OAP≌△BAQ(SAS),得出OP=BQ,∠ABQ=∠AOP=30°,∠AQB=∠APO=15°,再求出∠OAP=135°,进而判断出△OAQ≌△BAQ(SAS),得出∠OQA=∠BQA=15°,OQ=BQ,再判断出△OPQ是等边三角形,得出∠OQP=60°,进而求出∠BQP=30°,再求出∠PBQ=75°,即可得出结论.
【详解】解:(1)∵a2+b2﹣4a﹣2b+5=0,
∴(a﹣2)2+(b﹣1)2=0,
∴a﹣2=0,b﹣1=0,
∴a=2,b=1;
(2)由(1)知,a=2,b=1,
由运动知,OD=2t,OE=t,
∵OB=8,
∴DB=|8﹣2t|
∵△BAD≌△OAE,
∵DB=OE,
∴|8﹣2t|=t,
解得,t=(如图1)或t=8(如图2);
(3)如图3,
过点A作AQ⊥AP,使AQ=AP,连接OQ,BQ,PQ,
则∠APQ=45°,∠PAQ=90°,
∵∠OAB=90°,
∴∠PAQ=∠OAB,
∴∠OAB+∠BAP=∠PAQ+∠BAP,
即:∠OAP=∠BAQ,
∵OA=AB,AD=AD,
∴△OAP≌△BAQ(SAS),
∴OP=BQ,∠ABQ=∠AOP=30°,∠AQB=∠APO=15°,
在△AOP中,∠AOP=30°,∠APO=15°,
∴∠OAP=180°﹣∠AOP﹣∠APO=135°,
∴∠OAQ=360°﹣∠OAP﹣∠PAQ=135°﹣90°=135°=∠OAP,
∵OA=AB,AD=AD,
∴△OAQ≌△BAQ(SAS),
∴∠OQA=∠BQA=15°,OQ=BQ,
∵OP=BQ,
∴OQ=OP,
∵∠APQ=45°,∠APO=15°,
∴∠OPQ=∠APO+∠APQ=60°,
∴△OPQ是等边三角形,
∴∠OQP=60°,
∴∠BQP=∠OQP﹣∠OQA﹣∠BQA=60°﹣15°﹣15°=30°,
∵BQ=PQ,
∴∠PBQ=(180°﹣∠BQP)=75°,
∴∠ABP=∠ABQ+∠PBQ=30°+75°=105°.
【点睛】本题是三角形综合题,主要考查了配方法、非负数的性质、三角形内角和定理、等边三角形的判定和性质、全等三角形的判定及性质,构造出全等三角形是解题的关键.
4.(1),;C(8,4);
(2)证明见解析;
(3),理由见解析.
【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D,
证明,进一步可求出点C坐标;
(2)利用已知证明,,再证
解析:(1),;C(8,4);
(2)证明见解析;
(3),理由见解析.
【分析】(1)利用绝对值的非负性求出a,b的值,作轴交于点D,
证明,进一步可求出点C坐标;
(2)利用已知证明,,再证明,得到,,利用平行性质得到,进一步得,再利用HL定理证明,可得,即可证明CG垂直平分EF;
(3)证明得到,,又由(2)可知,进一步可得.
(1)
解:∵,即:,
∴,,
作轴交于点D,
∵,,
∴,
在和中,
∴,
∴,,
∴,即.
(2)
证明:∵,BE平分,
∴,,
在和中,
∴,
∴,,
∵,
∴,
∴,
∴,
∴,
在和中,
∴,
∴,即CG垂直平分EF.
(3)
解:,理由如下:
∵,
,
∴,
在和中,
∴,
∴,,
∵,
∴,
又由(2)可知,
∴,即.
【点睛】本题考查等腰直角三角形的性质,全等三角形的判定和性质,绝对值非负性,垂直平分线的判定,平行线的性质,坐标与图形.本题综合性较强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键.
5.(1)﹣i,1,;(2)﹣i﹣6;(3)的最小值为25.
【分析】(1)根据题目所给条件可得i3=i2•i,i4=i2•i2计算即可得出答案;
(2)根据多项式乘法法则进行计算,及题目所给已知条
解析:(1)﹣i,1,;(2)﹣i﹣6;(3)的最小值为25.
【分析】(1)根据题目所给条件可得i3=i2•i,i4=i2•i2计算即可得出答案;
(2)根据多项式乘法法则进行计算,及题目所给已知条件即可得出答案;
(3)根据题目已知条件,a+bi=4+3i,求出a、b,即可得出答案.
【详解】(1)i3=i2•i=﹣1×i=﹣i,
i4=i2•i2=﹣1×(﹣1)=1,
设S=i+i2+i3+…+i2021,
iS=i2+i3+…+i2021+i2022,
∴(1﹣i)S=i﹣i2022,
∴S=,
故答案为﹣i,1,;
(2)(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i)
=3﹣4i+3i﹣4i2﹣(4﹣9i2)
=3﹣i+4﹣4﹣9
=﹣i﹣6;
(3)a+bi====4+3i,
∴a=4,b=3,
∴=,
∴的最小值可以看作点(x,0)到点A(0,4),B(24,3)的最小距离,
∵点A(0,4)关于x轴对称的点为A'(0,﹣4),连接A'B即为最短距离,
∴A'B==25,
∴的最小值为25.
【点睛】此题考查了实数的运算,以及规律型:数字的变化类,弄清题中的新定义是解本题的关键.
6.(1);(2)时,与全等,证明见解析;(3)当或时,为等腰三角形
【分析】(1)由题意根据图形点的运动问题建立不等式组,进行分析求解即可;
(2)根据题意利用全等三角形的判定定理(SAS),进行
解析:(1);(2)时,与全等,证明见解析;(3)当或时,为等腰三角形
【分析】(1)由题意根据图形点的运动问题建立不等式组,进行分析求解即可;
(2)根据题意利用全等三角形的判定定理(SAS),进行分析求证即可;
(3)根据题意分和以及三种情况,根据等腰三角形的性质进行分析计算.
【详解】(1)依题意,
,
.
(2)时,与全等,
证明:时,,,在和中,
∵,,点是的中点,
,,,
(SAS).
(3)①当时,有;
②当时,
∵,
∴,
∴
有,
∵,
∴(舍去);
③当时,
∵,
∴,
∴
有,
∴;
综上,当或时,为等腰三角形.
【点睛】本题考查等腰三角形相关的动点问题,熟练掌握等腰三角形的性质和全等三角形的判定以及相似三角形的判定与性质并运用数形结合的思维将动点问题转化为代数问题进行分析是解题的关键.
7.(1)见详解;
(2)DE=DC,理由见详解;
(3)∠DEC=45°
【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证
(2)猜测,寻找条件证明即可.最常用
解析:(1)见详解;
(2)DE=DC,理由见详解;
(3)∠DEC=45°
【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证
(2)猜测,寻找条件证明即可.最常用的是证明两个三角形全等,但图中给出的三角形中并未出现全等三角形,所以添加辅助线:在射线AB上截取,这样只要证明即可.利用等边三角形的性质及可知为等边三角形,这样通过两个等边三角形即可证明.
(3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,用同样的方法证明,又因为ED⊥DC,所以为等腰之间三角形,则∠DEC度数可求.
【详解】由题意可知
∵D为AB的中点
∵为等边三角形,
(2)
理由如下:
在射线AB上截取,连接EF
∵为等边三角形
∴为等边三角形
由题意知
即
在和中,
(3)如图,在射线CB上截取,连接DF
∵为等边三角形
∴为等边三角形
由题意知
即
在和中,
∵ED⊥DC
∴为等腰直角三角形
【点睛】本题主要考查了等腰三角形,等边三角形,全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键.
8.(1)见解析
(2)
(3)
【分析】(1)先由AC=BC、∠ACB=90°得到∠ABC=45°,进而得到∠CBD=∠CDB=45°,然后得到∠BCD=90°,最后得到∠ACB+∠BCD=18
解析:(1)见解析
(2)
(3)
【分析】(1)先由AC=BC、∠ACB=90°得到∠ABC=45°,进而得到∠CBD=∠CDB=45°,然后得到∠BCD=90°,最后得到∠ACB+∠BCD=180°,即A、C、D三点共线;
(2)先用含有t的式子表示CE和CF的长,然后根据CE=2CF列出方程求得t的值;
(3)先由∠BCP=∠FCN、∠BCP+∠ECM=90°,∠ECM+∠MEC=90°得到∠MEC=∠FCN,然后结合全等三角形的性质列出方程求得t的值.
(1)
证明:∵AC=BC,∠ACB=90°,
∴∠ABC=45°,
∵点B与点D关于直线l对称,
∴BD⊥直线l,BC=CD,
∵直线l∥AB,
∴BD⊥AB,
∴∠ABD=90°,
∴∠CBD=∠CDB=45°,
∴∠BCD=90°,
∴∠ACB+∠BCD=180°,
∴A、C、D三点共线;
(2)
解:∵AC=10cm,BC=7cm,
∴当点F沿D→C方向时,0≤t≤3.5,
∴CE=10-t,CF=7-2t,
∵CE=2CF,
∴10-t=2(7-2t),
解得:t=.
(3)
解:∵∠BCP=∠FCN,∠BCP+∠ECM=90°,∠ECM+∠MEC=90°,
∴∠MEC=∠FCN,
∵△CEM≌△CFN,
当CE=CF时,△CEM≌△CFN,
当点F沿D→C路径运动时,
10-t=7-2t,
解得,t=-3,不合题意,
当点F沿C→B路径运动时,
10-t=2t-7,
解得,t=,
当点F沿B→C路径运动时,
10-t=7-(2t-7×2),
解得,t=11,
∵第一个点到达终点时第二个点也停止运动.点E从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C.AC=10,
∴0≤t≤10,
∴t=11时,已停止运动.
综上所述,当t=秒时,△CEM≌△CFN.
【点睛】本题是三角形综合题目,考查的是全等三角形的判定和性质、等腰三角形的性质、等腰直角三角形的性质等知识,掌握全等三角形的判定定理和性质定理,灵活运用分类讨论思想是解题的关键.
9.(1),
(2),理由见解析
(3)
【分析】(1)由角平分线的定义得,则,再利用三角形内角和定理可得答案;
(2)根据三角形内角和定理得,而,代入化简即可;
(3)由(2)同理可得答案.
解析:(1),
(2),理由见解析
(3)
【分析】(1)由角平分线的定义得,则,再利用三角形内角和定理可得答案;
(2)根据三角形内角和定理得,而,代入化简即可;
(3)由(2)同理可得答案.
(1)
解:点是和平分线的交点,
,
,
在中,
,
,
,
,
故答案为:;
在中,,
,
,
,
,
故答案为:;
(2)
解:,理由如下:
,,,
,
,
,
,
;
(3)
解:在中,,
,
,
,
,
故答案为:.
【点睛】本题主要考查了三角形内角和定理,角平分线的定义,解题的关键是采取类比的方法,同时渗透了整体思想.
展开阅读全文