1、人教版初二上册压轴题数学试卷附解析(一)1等边中,点、分别在边、上,且,连接、交于点(1)如图1,求的度数;图1(2)连接,若,求的值;(3)如图2,若点为边的中点,连接,且,则的大小是_图22如图,在平面直角坐标系中,已知点,且,为轴上点右侧的动点,以为腰作等腰,使,直线交轴于点(1)求证:;(2)求证:;(3)当点运动时,点在轴上的位置是否发生变化,为什么?3在平面直角坐标系中,直线 AB 分别交 x 轴、y 轴于点A(a,0)、点 B(0, b),且 a、b 满足a2+b24a8b+20=0,点 P 在直线 AB 的右侧,且APB45(1)a ;b (2)若点 P 在 x 轴上,请在图中
2、画出图形(BP 为虚线),并写出点 P 的坐标;(3)若点 P 不在 x 轴上,是否存在点P,使ABP 为直角三角形?若存在,请求出此时P的坐标;若不存在,请说明理由4在ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作ADE,使AD=AE,DAE =BAC,连接CE(1)如图1,当点D在线段BC上,如果BAC=90,则BCE=_度;(2)设,如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由;当点在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论5在平面直角坐标系中,点A(a,0),点B(0,b),已知a,b满足(1)求点A和
3、点B的坐标;(2)如图1,点E为线段OB的中点,连接AE,过点A在第二象限作,且,连接BF交x轴于点D,求点D和点F的坐标;:(3)在(2)的条件下,如图2,过点E作交AB于点P,M是EP延长线上一点,且,连接MO,作,ON交BA的延长线于点N,连接MN,求点N的坐标6已知,(1)若,作,点在内如图1,延长交于点,若,则的度数为 ;如图2,垂直平分,点在上,求的值;(2)如图3,若,点在边上,点在边上,连接,求的度数7如图,和中,边与边交于点(不与点,重合),点,在异侧,为与的角平分线的交点(1)求证:;(2)设,请用含的式子表示,并求的最大值;(3)当时,的取值范围为,求出,的值8如图1,A
4、(2,6),C(6,2),ABy轴于点B,CDx轴于点D(1)求证:AOBCOD;(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EFEFCE且EFCE,点G为AF中点连接EG,EO,求证:OEG45【参考答案】2(1);(2);(3)【分析】(1)由是等边三角形,可得出,再利用,可证,得出,由可求出,最后由补角定义求出.(2)在上取点,使,由可证,再利用,可证明,进而求出,再用补角的性质得知,在解析:(1);(2);(3)【分析】(1)由是等边三角形,可得出,再利用,可证,得出,由可求出,最后由补角定义求出.(
5、2)在上取点,使,由可证,再利用,可证明,进而求出,再用补角的性质得知,在中利用外角的性质可求出,进而证出为等腰三角形,最后可证出即可求解.(3)延长至,使为等边三角形,延长交于,可得出,进而得出,利用角的和差得出,则证出,进而证出,再利用,证出为等边三角形,进而证出.【详解】(1)是等边三角形,在和中,(2)在上取点,使由(1)知,又,在和中,(3)提示:目测即得答案详细理由如下:由(1)知延长至,使为等边三角形延长交于 ,在和中, ,, 在和中, ,为等边三角形, 【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等边三角形的判定和性质,熟练掌握全等三角形的判定和性质及等边三角
6、形的判定和性质是解题的关键.3(1)见解析;(2)见解析;(3)不变,理由见解析【分析】(1)先根据非负数的性质求出、的值,作于点,由定理得出,根据全等三角形的性质即可得出结论;(2)先根据,得出,再由定理即可得出;解析:(1)见解析;(2)见解析;(3)不变,理由见解析【分析】(1)先根据非负数的性质求出、的值,作于点,由定理得出,根据全等三角形的性质即可得出结论;(2)先根据,得出,再由定理即可得出;(3)设,由全等三角形的性质可得出,故为定值,再由,可知的长度不变,故可得出结论【详解】解:(1)证明:,解得,作于点,在与中,;(2)证明:,即,在与中,;(3)点在轴上的位置不发生改变理由
7、:设,由(2)知,为定值,长度不变,点在轴上的位置不发生改变【点睛】本题考查的是全等三角形的判定与性质,熟知全等三角形的判定定理是解答此题的关键4(1)2,4;(2)见解析,(4,0);(3)P(4,2)或(2,2)【分析】(1)将已知等式变形,利用乘方的非负性即可求出a值;(2)根据题意画出图形,由(1)得出OB的长,结合AP解析:(1)2,4;(2)见解析,(4,0);(3)P(4,2)或(2,2)【分析】(1)将已知等式变形,利用乘方的非负性即可求出a值;(2)根据题意画出图形,由(1)得出OB的长,结合APB45,得出OPOB,可得点B的坐标;(3)分当ABP90时和当BAP90时两种
8、情况进行讨论,结合全等三角形的判定和性质即可求出点P坐标.【详解】解:(1)a2+b24a8b+20=0,( a24a+4)+(b28b+16)0,( a2)2+(b4) 20a2,b4,故答案为:2,4;(2)如图 1,由(1)知,b4,B(0,4),OB4,点 P 在直线 AB 的右侧,且在 x 轴上,APB45,OPOB4,P(4,0),故答案为:(4,0);(3)存在理由如下:由(1)知 a2,b4,A(2,0),B(0,4),OA2,OB4,ABP 是直角三角形,且APB45,只有ABP90或BAP90,、如图 2,当ABP90时,APBBAP45,ABPB ,过点 P 作 PCOB
9、 于 C,BPC+CBP90,CBP+ABO90 ,ABOBPC,在AOB 和BCP 中, ,AOBBCP(AAS),PCOB4,BCOA2,OCOBBC2,P(4,2),、如图3,当BAP90时, 过点 P作 PDOA 于 D,同的方法得,ADPBOA,DPOA2,ADOB4,ODADOA2,P(2,2);即:满足条件的点 P(4,2)或(2,2);【点睛】本题考查了非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,难度不大,解题的关键是要根据直角三角形的性质进行分类讨论.5(1)90;(2),理由见解析;当点D在射线BC上时,a+=180,当点D在射线BC的反向延长线上时,
10、a=【分析】(1)可以证明BADCAE,得到BACE,证明ACB解析:(1)90;(2),理由见解析;当点D在射线BC上时,a+=180,当点D在射线BC的反向延长线上时,a=【分析】(1)可以证明BADCAE,得到BACE,证明ACB45,即可解决问题;(2)证明BADCAE,得到BACE,BACB,即可解决问题;证明BADCAE,得到ABDACE,借助三角形外角性质即可解决问题【详解】解:(1)AB=AC,BAC=90,ABC=ACB=45,DAE=BAC,BAD=CAE,AB=AC,AD=AE,BADCAE(SAS)ABC=ACE=45,BCE=ACB+ACE=90,故答案为:;(2)理
11、由:,即又,如图:当点D在射线BC上时,+=180,连接CE,BAC=DAE,BAD=CAE,在ABD和ACE中,ABDACE(SAS),ABD=ACE,在ABC中,BAC+B+ACB=180,BAC+ACE+ACB=BAC+BCE=180,即:BCE+BAC=180,+=180,如图:当点D在射线BC的反向延长线上时,=连接BE,BAC=DAE,BAD=CAE,又AB=AC,AD=AE,ABDACE(SAS),ABD=ACE,ABD=ACE=ACB+BCE,ABD+ABC=ACE+ABC=ACB+BCE+ABC=180,BAC=180-ABC-ACB,BAC=BCE=;综上所述:点D在直线B
12、C上移动,+=180或=【点睛】该题主要考查了等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点及其应用问题;应牢固掌握等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点6(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;(2)解析:(1),;(2)D(-1,0),F(-2,4);(3)N(-6,2)【分析】(1)结合题意,根据绝对值和乘方的性质,得,通过求解一元一次方程,得,;结合坐标的性质分析,即可得到答案;(2)如图,过点F作FHAO于点H,
13、根据全等三角形的性质,通过证明,得AH=EO=2,FH=AO=4,从而得OH =2,即可得点F坐标;通过证明,推导得HD=OD=1,即可得到答案;(3)过点N分别作NQON交OM的延长线于点Q,NGPN交EM的延长线于点G,再分别过点Q和点N作QREG于点R,NSEG于点S,根据余角和等腰三角形的性质,通过证明等腰和等腰,推导得,再根据全等三角形的性质,通过证明,得等腰,再通过证明,得NS=EM=4,MS=OE=2,即可完成求解【详解】(1),(2)如图,过点F作FHAO于点HAFAEFHA=AOE=90, AFH=EAO又AF=AE,在和中 AH=EO=2,FH=AO=4OH=AO-AH=2
14、F(-2,4) OA=BO, FH=BO在和中 HD=OD HD=OD=1D(-1,0)D(-1,0),F(-2,4);(3)如图,过点N分别作NQON交OM的延长线于点Q,NGPN交EM的延长线于点G,再分别过点Q和点N作QREG于点R,NSEG于点S, 等腰NQ=NO,NGPN, NSEG , , 点E为线段OB的中点 等腰NG=NP, QNG=ONP在和中 NGQ=NPO,GQ=PO,PO=PBPOE=PBE=45NPO=90NGQ=90QGR=45. 在和中 QR=OE在和中 QM=OM.NQ=NO,NMOQ等腰 在和中 NS=EM=4,MS=OE=2N(-6,2)【点睛】本题考查了直
15、角坐标系、全等三角形、直角三角形、等腰三角形、绝对值、乘方的知识;解题的关键是熟练掌握直角坐标系、全等三角形、等腰三角形的性质,从而完成求解7(1)15;(2)【分析】(1)根据等腰直角三角形的性质,连接,得,所对的直角边是斜边的一半,可得,所以可得,和是等腰三角形,由外角性质计算可得;构造“一线三垂直”模型,证解析:(1)15;(2)【分析】(1)根据等腰直角三角形的性质,连接,得,所对的直角边是斜边的一半,可得,所以可得,和是等腰三角形,由外角性质计算可得;构造“一线三垂直”模型,证明三角形,利用面积比等于等高的三角形的底边的比,结合已知条件即可解得(2)构造等边,通过证明,等边代换,得出
16、等腰三角形,代入角度计算即得【详解】(1)连接,在,因为,故答案为:过作交延长线于,连接垂直平分,故答案为:;(2)以AB向下构造等边,连接DK,延长AD,BK交于点T,等边中,在和中,等边三角形三线合一可知,BD是边AK的垂直平分线,故答案为: 【点睛】考查了等腰直角三角形的性质,外角的性质,等腰三角形的判定和性质,构造等边三角形的方法证明全等,全等三角形的性质应用很关键,熟记几何图形的性质和判定是解决图形问题的重要方法依据8(1)见解析(2),3(3)m105,n150【分析】(1)由条件易证,得,即可得证(2)PDAD-AP6-x,点P在线段BC上且不与B、C重合时, AP有最小值,即A
17、D解析:(1)见解析(2),3(3)m105,n150【分析】(1)由条件易证,得,即可得证(2)PDAD-AP6-x,点P在线段BC上且不与B、C重合时, AP有最小值,即ADBC时AP的长度,此时PD可得最大值(3)为与的角平分线的交点,应用“三角形内角和等于180”及角平分线定义,即可表示出,从而得到m,n的值(1)解:在和中,如图1即(2)解:当ADBC时,APAB3最小,即PD633为PD的最大值(3)解:如图2,设则 为与的角平分线的交点即【点睛】本题是一道几何综合题,考查了点到直线的距离垂线段最短,30的角所对的直角边等于斜边的一半,全等三角形的判定和性质,角平分线定义等,解题关
18、键是将PD最大值转化为PA的最小值9(1)见解析;(2)见解析;(3)见解析【分析】(1)根据即可证明;(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;(3)延解析:(1)见解析;(2)见解析;(3)见解析【分析】(1)根据即可证明;(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;(3)延长到,使,连接,延长交于点,根据证明,得出,故,由平行线的性质得出,进而推出,根据证明,故,即可证明【详解】(1)轴于点,轴于点,;(2)如图2,过点作轴,交于点,轴, 在与中,即点为中点;(3)如图3,延长到,使,连接,延长交于点,即【点睛】本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键