资源描述
人教版七年级下册数学期末质量监测卷
一、选择题
1.如图,直线EF与直线AB,CD相交.图中所示的各个角中,能看做∠1的内错角的是( )
A.∠2 B.∠3 C.∠4 D.∠5
2.下列四种汽车车标,可以看做是由某个基本图案经过平移得到的是( )
A. B. C. D.
3.下列各点中,在第三象限的点是( )
A. B. C. D.
4.下列说法中不正确的个数为( ).
①在同一平面内,两条直线的位置关系只有两种:相交和垂直.
②有且只有一条直线垂直于已知直线.
③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.
⑤过一点,有且只有一条直线与已知直线平行.
A.2个 B.3个 C.4个 D.5个
5.如图,直线AB∥CD,AE⊥CE,∠1=125°,则∠C等于( )
A.35° B.45° C.50° D.55°
6.下列说法正确的是( )
A.是分数 B.互为相反数的数的立方根也互为相反数
C.的系数是 D.的平方根是
7.如图,直线,三角板的直角顶点在直线上,,则( )
A.26° B.54° C.64° D.66°
8.如图,在平面直角坐标系中,点.点第次向上跳动个单位至点,紧接着第次向左跳动个单位至点,第次向上跳动个单位至点,第次向右跳动个单位至点,第次又向上跳动个单位至点,第次向左跳动个单位至点,…….照此规律,点第次跳动至点的坐标是( )
A. B. C. D.
九、填空题
9.若,则______.
十、填空题
10.在平面直角坐标系中,点P(-3,2)关于x轴对称的点P1的坐标是______________.
十一、填空题
11.如图,DB是的高,AE是角平分线,,则______.
十二、填空题
12.如图所示,已知AB∥CD,EF平分∠CEG,∠1=80°,则∠2的度数为______.
十三、填空题
13.如图,把一张长方形纸片沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若,则____________,____________.
十四、填空题
14.阅读下列解题过程:
计算:
解:设①
则②
由②-①得,
运用所学到的方法计算:______________.
十五、填空题
15.在平面直角坐标系中,已知线段且轴,且点的坐标是则点的坐标是____.
十六、填空题
16.如图,在平面直角坐标系中,点由原点出发,第一次跳动至点,第二次向左跳动3个单位至点,第三次跳动至点,第四次向左跳动5个单位至点,第五次跳动至点,…,依此规律跳动下去,点的第2020次跳动至点的坐标是_______.
十七、解答题
17.计算题
(1). (2);
十八、解答题
18.求下列各式中的x值:
(1)(x﹣1)2=4;
(2)(2x+1)3+64=0;
(3)x3﹣3=.
十九、解答题
19.如图,已知:,.
求证:.
证明:∵(已知),
∴∠______=∠______(______).
∵(______),
∴∠______(等量代换).
∴(______).
二十、解答题
20.在如图的方格中,每个小方格都是边长为1个单位长度的正方形,三角形ABC的三个顶点都在格点(小方格的顶点)上,
(1)请建立适当的平面直角坐标系,使点A,C的坐标分别为(﹣2,﹣1),(1,﹣1),并写出点B的坐标;
(2)在(1)的条件下,将三角形ABC先向右平移4个单位长度,再向上平移2个单位长度后可得到三角形A'B'C',请在图中画出平移后的三角形A'B'C',并分别写出点A',B',C'的坐标.
二十一、解答题
21.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部地写出来,于是小聪用来表示的小数部分,你同意小聪的表示方法吗?事实上小聪的表示方法是有道理的,因为的整数部分是1,用个数减去其整数部分,差就是它的小数部分.
请解答下列问题:
(1)的整数部分是____,小数部分是_____.
(2)如果的小数部分是a,的整数部分是b,求的值.
(3)已知,其中x是正整数,,求的相反数.
二十二、解答题
22.已知足球场的形状是一个长方形,而国际标准球场的长度和宽度(单位:米)的取值范围分别是,.若某球场的宽与长的比是1:1.5,面积为7350平方米,请判断该球场是否符合国际标准球场的长宽标准,并说明理由.
二十三、解答题
23.已知:AB∥CD,截线MN分别交AB、CD于点M、N.
(1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足+(β﹣60)2=0,求∠BEM的度数;
(2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由;
(3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为 (直接写出答案).
二十四、解答题
24.综合与探究
综合与实践课上,同学们以“一个含角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线,,且,三角形是直角三角形,,,
操作发现:
(1)如图1.,求的度数;
(2)如图2.创新小组的同学把直线向上平移,并把的位置改变,发现,请说明理由.
实践探究:
(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由.
二十五、解答题
25.模型与应用.
(模型)
(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.
(应用)
(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为 .
如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为 .
(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CMnMn-1的角平分线MnO交于点O,若∠M1OMn=m°.
在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)
【参考答案】
一、选择题
1.B
解析:B
【分析】
两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.根据内错角的边构成“Z”形判断即可.
【详解】
解:由图可知:能看作∠1的内错角的是∠3,
故选:B.
【点睛】
本题主要考查同位角、内错角、同旁内角的定义,关键是掌握同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.
2.B
【分析】
根据平移变换的性质,逐一判断选项,即可得到答案.
【详解】
A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;
B. 可以经过平移变换得到,故本选项符合题意;
C
解析:B
【分析】
根据平移变换的性质,逐一判断选项,即可得到答案.
【详解】
A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;
B. 可以经过平移变换得到,故本选项符合题意;
C. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;
D. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;
故选B.
【点睛】
本题主要考查平移变换的性质,掌握平移变换的性质,是解题的关键.
3.D
【分析】
应先判断点在第三象限内点的坐标的符号特点,进而找相应坐标.
【详解】
解:∵第三象限的点的横坐标是负数,纵坐标也是负数,
∴结合选项符合第三象限的点是(-2,-4).
故选:D.
【点睛】
本题主要考查了点在第三象限内点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.C
【分析】
根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.
【详解】
∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;
∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;
如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;
从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;
过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;
∴不正确的有①②④⑤四个.
故选:C.
【点睛】
本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.
5.A
【分析】
过点E作EF∥AB,则EF∥CD,利用“两直线平行,内错角相等”可得出∠BAE=∠AEF及∠C=∠CEF,结合∠AEF+∠CEF=90°可得出∠BAE+∠C=90°,由邻补角互补可求出∠BAE的度数,进而可求出∠C的度数.
【详解】
解:过点E作EF∥AB,则EF∥CD,如图所示.
∵EF∥AB,
∴∠BAE=∠AEF.
∵EF∥CD,
∴∠C=∠CEF.
∵AE⊥CE,
∴∠AEC=90°,即∠AEF+∠CEF=90°,
∴∠BAE+∠C=90°.
∵∠1=125°,∠1+∠BAE=180°,
∴∠BAE=180°﹣125°=55°,
∴∠C=90°﹣55°=35°.
故选:A.
【点睛】
本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.
6.B
【分析】
根据分数的定义,立方根的性质,单项式的系数的定义,平方根的定义,即可得到答案.
【详解】
∵是无理数,
∴A错误,
∵互为相反数的数的立方根也互为相反数,
∴B正确,
∵的系数是,
∴C错误,
∵的平方根是±8,
∴D错误,
故选B.
【点睛】
本题主要考查分数的定义,立方根的性质,单项式的系数的定义,平方根的定义,掌握上述定义和性质,是解题的关键.
7.C
【分析】
根据平角等于180°列式计算得到∠3,根据两直线平行,同位角相等可得∠3=∠2.
【详解】
解:如图,
∵∠1=26°,∠ACB=90°,
∴∠3=90°-∠1=64°,
∵直线a∥b,
∴∠2=∠3=64°,
故选:C.
【点睛】
本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.
8.A
【分析】
设第n次跳动至点Pn,根据部分点An坐标的变化找出变化规律P4n(n + 1,2n),Pn+1(n + 1,2n + 1),P4n+2(-n-1,2n+ 1),P4n+3(-n-1,2
解析:A
【分析】
设第n次跳动至点Pn,根据部分点An坐标的变化找出变化规律P4n(n + 1,2n),Pn+1(n + 1,2n + 1),P4n+2(-n-1,2n+ 1),P4n+3(-n-1,2n +2),依此规律结合200 = 50 ×4,即可得出点P200的坐标.
【详解】
解:设第n次跳动至点Pn,观察发现:P(1,0),P1(1,1),P2(-1,1),P3(-1,2),P4(2,2),P5(2,3),P6(-2,3),P7(-2,4),P8(3,4),P9(3,5),...,
∴P4n+1(n + 1,2n +1),P4n+2(-n-1,2n+ 1),
P4n+3(-n-1,2n+2),P4n(n + 1,2n),(n为自然数),
∵200 = 50 × 4,
∴P200(50+1 ,50×2),即(51,100).
故选A.
【点睛】
本题考查了规律型中点的坐标,解题的关键是准确找到点的坐标变化规律.
九、填空题
9.1
【分析】
根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.
【详解】
解:根据题意得,a-3=0,b+2=0,
解得a=3,b= -2,
所以3+(-2)=1.
故答案为1.
解析:1
【分析】
根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.
【详解】
解:根据题意得,a-3=0,b+2=0,
解得a=3,b= -2,
所以3+(-2)=1.
故答案为1.
【点睛】
本题考查平方数非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.
十、填空题
10.(-3,-2)
【分析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.
【详解】
点P(﹣3,2)关于x轴对称的点Q的坐标是(﹣3,﹣2).
故答案为:(﹣3,﹣2).
【点
解析:(-3,-2)
【分析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.
【详解】
点P(﹣3,2)关于x轴对称的点Q的坐标是(﹣3,﹣2).
故答案为:(﹣3,﹣2).
【点睛】
本题考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.
十一、填空题
11.【分析】
由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD与∠FAD互余,与∠BFE是对顶角,故可求得∠BFE的度数.
【详解】
∵AE是角平分线,∠BAE=26°,
∴∠FAD=∠B
解析:
【分析】
由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD与∠FAD互余,与∠BFE是对顶角,故可求得∠BFE的度数.
【详解】
∵AE是角平分线,∠BAE=26°,
∴∠FAD=∠BAE=26°,
∵DB是△ABC的高,
∴∠AFD=90°−∠FAD=90°−26°=64°,
∴∠BFE=∠AFD=64°.
故答案为64°.
【点睛】
本题考查了三角形内角和定理,三角形的角平分线、中线和高,熟练掌握三角形内角和定理是解题的关键.
十二、填空题
12.50°
【分析】
由角平分线的定义,结合平行线的性质,易求∠2的度数.
【详解】
解:∵EF平分∠CEG,
∴∠CEG=2∠CEF,
又∵AB∥CD,
∴∠2=∠CEF=(180°−∠1)=50°,
解析:50°
【分析】
由角平分线的定义,结合平行线的性质,易求∠2的度数.
【详解】
解:∵EF平分∠CEG,
∴∠CEG=2∠CEF,
又∵AB∥CD,
∴∠2=∠CEF=(180°−∠1)=50°,
故答案为:50°.
【点睛】
本题主要考查了平行线的性质,解决问题的关键是利用平行线的性质确定内错角相等,然后根据角平分线定义得出所求角与已知角的关系.
十三、填空题
13.68°; 112°.
【分析】
首先根据折叠的性质和平行线的性质求∠FED的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数.
【详解】
解:∵延折叠得到,
解析:68°; 112°.
【分析】
首先根据折叠的性质和平行线的性质求∠FED的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数.
【详解】
解:∵延折叠得到,
∴,
∵,,
∴(两直线平行,内错角相等),
∴,
∴,
又∵,
∴,
∴.
综上,.
故答案为:68°;112°.
【点睛】
本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键.
十四、填空题
14..
【分析】
设S=,等号两边都乘以5可解决.
【详解】
解:设S=①
则5S=②
②-①得4S=,
所以S=.
故答案是:.
【点睛】
本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的
解析:.
【分析】
设S=,等号两边都乘以5可解决.
【详解】
解:设S=①
则5S=②
②-①得4S=,
所以S=.
故答案是:.
【点睛】
本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的方法就可以解决.
十五、填空题
15.或
【分析】
设点B的坐标为,然后根据轴得出B点的纵坐标,再根据即可得出B点的横坐标.
【详解】
设点B的坐标为,
∵轴,点A(1,2)
∴B点的纵坐标也是2,即 .
∵,
或 ,
解得或 ,
∴点
解析:或
【分析】
设点B的坐标为,然后根据轴得出B点的纵坐标,再根据即可得出B点的横坐标.
【详解】
设点B的坐标为,
∵轴,点A(1,2)
∴B点的纵坐标也是2,即 .
∵,
或 ,
解得或 ,
∴点B的坐标为或.
故答案为:或.
【点睛】
本题主要考查平行于x轴的线段上的点的特点,掌握平行于x轴的线段上的点的特点是解题的关键.
十六、填空题
16.【分析】
根据点的坐标、坐标的平移寻找规律即可求解.
【详解】
解:因为P1(1,1),P2(-2,1),
P3(2,2),P4(-3,2),
P5(3,3),P6(-4,3),
P7(4,
解析:
【分析】
根据点的坐标、坐标的平移寻找规律即可求解.
【详解】
解:因为P1(1,1),P2(-2,1),
P3(2,2),P4(-3,2),
P5(3,3),P6(-4,3),
P7(4,4),P8(-5,4), …
P2n-1(n,n),P2n(-n-1,n)(n为正整数),
所以2n=2020, ∴n=1010, 所以P 2020(-1011,1010),
故答案为(-1011,1010).
【点睛】
本题考查了点的坐标、坐标的平移,解决本题的关键是寻找点的变化规律.
十七、解答题
17.(1)1;(2).
【分析】
(1)先根据绝对值的性质去绝对值符号,再进行加减运算即可;
(2)先根据算术平方根、立方根的性质化简,再进行加减运算即可.
【详解】
解:(1)原式=;
(2)原式=.
解析:(1)1;(2).
【分析】
(1)先根据绝对值的性质去绝对值符号,再进行加减运算即可;
(2)先根据算术平方根、立方根的性质化简,再进行加减运算即可.
【详解】
解:(1)原式=;
(2)原式=.
【点睛】
本题考查绝对值、算术平方根、立方根的性质,熟练的掌握性质进行运算是解题的关键.
十八、解答题
18.(1)x=3或x=﹣1;(2)x=﹣2.5;(3)x=1.5.
【分析】
(1)直接开平方进行解答;
(2)先移项,再开立方进行解答.
(3)先移项,系数化为1,再开平方法进行解答
【详解】
解:(
解析:(1)x=3或x=﹣1;(2)x=﹣2.5;(3)x=1.5.
【分析】
(1)直接开平方进行解答;
(2)先移项,再开立方进行解答.
(3)先移项,系数化为1,再开平方法进行解答
【详解】
解:(1)开方得:x﹣1=2或x﹣1=﹣2,
解得:x=3或x=﹣1;
(2)方程整理得:(2x+1)3=﹣64,
开立方得:2x+1=﹣4,
解得:x=﹣2.5;
(3)方程整理得:x3=,
开立方得:x=1.5.
【点睛】
本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.
十九、解答题
19.;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行
【分析】
首先根据平行线的性质可得∠B=∠C,再由∠B+∠D=180°,可得∠C+∠D=180°,根据同旁内角互补,两直线平行可得C
解析:;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行
【分析】
首先根据平行线的性质可得∠B=∠C,再由∠B+∠D=180°,可得∠C+∠D=180°,根据同旁内角互补,两直线平行可得CB∥DE.
【详解】
证明:∵AB∥CD,
∴∠B=∠C(两直线平行,内错角相等),
∵∠B+∠D=180°(已知),
∴∠C+∠D=180°(等量代换),
∴CB∥DE(同旁内角互补,两直线平行).
故答案为:;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行
【点睛】
本题考查了平行线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用平行线的性质和判定证明.
二十、解答题
20.(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)
【分析】
(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可.
(
解析:(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)
【分析】
(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可.
(2)分别作出A′,B′,C′即可解决问题.
【详解】
解:(1)平面直角坐标系如图所示:B(0,1).
(2)△A′B′C′如图所示.A′(2,1),B′(4,3),C′(5,1).
【点睛】
本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
二十一、解答题
21.(1)3;;(2)7;(3)
【分析】
(1)先求出的取值范围,即可求出的整数部分,从而求出结论;
(2)先估算的大小,再求出其小数部分a的值,同理估计的大小,再求出其整数部分b的值,即可求解;
(
解析:(1)3;;(2)7;(3)
【分析】
(1)先求出的取值范围,即可求出的整数部分,从而求出结论;
(2)先估算的大小,再求出其小数部分a的值,同理估计的大小,再求出其整数部分b的值,即可求解;
(3)根据题意先求出x,y所表示的数,再求出x-y,即可求出其相反数.
【详解】
解:(1)∵3<<4,
∴的整数部分是3,小数部分是
故答案为:3;;
(2)∵
∴
∴
∴的小数部分a=-2=
∵
∴
∴的整数部分b=4
∴
=+4
=7;
(3)∵
∴
∴
∴的整数部分为2,小数部分为-2=
∵,其中x是正整数,,
∴,y=
∴=
∴的相反数为.
【点睛】
此题考查的是求无理数的整数部分和小数部分,掌握无理数的估算方法是解题关键.
二十二、解答题
22.符合,理由见解析
【分析】
根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案.
【详解】
解:符合,理由如下:
设宽为b米,则长为1.5b米,由题意得,
1.5b×b
解析:符合,理由见解析
【分析】
根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案.
【详解】
解:符合,理由如下:
设宽为b米,则长为1.5b米,由题意得,
1.5b×b=7350,
∴b=70,或b=-70(舍去),
即宽为70米,长为1.5×70=105米,
∵100≤105≤110,64≤70≤75,
∴符合国际标准球场的长宽标准.
【点睛】
本题考查算术平方根的意义,列出方程求出长和宽是得出正确答案的前提.
二十三、解答题
23.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)
【分析】
(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;
(2)过点E作直线EH∥AB,由角平分线的性质和平行
解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)
【分析】
(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;
(2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解;
(3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.
【详解】
解:(1)∵+(β﹣60)2=0,
∴α=30,β=60,
∵AB∥CD,
∴∠AMN=∠MND=60°,
∵∠AMN=∠B+∠BEM=60°,
∴∠BEM=60°﹣30°=30°;
(2)∠DEF+2∠CDF=150°.
理由如下:过点E作直线EH∥AB,
∵DF平分∠CDE,
∴设∠CDF=∠EDF=x°;
∵EH∥AB,
∴∠DEH=∠EDC=2x°,
∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;
∴∠DEF=150°﹣2∠CDF,
即∠DEF+2∠CDF=150°;
(3)如图3,设MQ与CD交于点E,
∵MQ平分∠BMT,QC平分∠DCP,
∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,
∵AB∥CD,
∴∠BME=∠MEC,∠BMP=∠PND,
∵∠MEC=∠Q+∠DCQ,
∴2∠MEC=2∠Q+2∠DCQ,
∴∠PMB=2∠Q+∠PCD,
∵∠PND=∠PCD+∠CPM=∠PMB,
∴∠CPM=2∠Q,
∴∠Q与∠CPM的比值为,
故答案为:.
【点睛】
本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键.
二十四、解答题
24.(1);(2)理由见解析;(3),理由见解析.
【分析】
(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;
(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠
解析:(1);(2)理由见解析;(3),理由见解析.
【分析】
(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;
(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC−∠DBC=60°−∠1,进而得出结论;
(3)过点C 作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出结论.
【详解】
解:(1)如图1 ,,
,
,
;
图1
(2)理由如下:如图2. 过点作,
图2
,
,
,
,
,
,
;
(3),
图3
理由如下:如图3,过点作,
平分,
,
,
又,
,
,
,
,
又 ,
,
.
【点睛】
本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.
二十五、解答题
25.(1)证明见解析;(2)900° ,180°(n-1);(3)(180n-180-2m)°
【详解】
【模型】
(1)证明:过点E作EF∥CD,
∵AB∥CD,
∴EF∥AB,
∴∠1+∠MEF
解析:(1)证明见解析;(2)900° ,180°(n-1);(3)(180n-180-2m)°
【详解】
【模型】
(1)证明:过点E作EF∥CD,
∵AB∥CD,
∴EF∥AB,
∴∠1+∠MEF=180°,
同理∠2+∠NEF=180°
∴∠1+∠2+∠MEN=360°
【应用】
(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;
由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),
故答案是:900° , 180°(n-1);
(3)过点O作SR∥AB,
∵AB∥CD,
∴SR∥CD,
∴∠AM1O=∠M1OR
同理∠C MnO=∠MnOR
∴∠A M1O+∠CMnO=∠M1OR+∠MnOR,
∴∠A M1O+∠CMnO=∠M1OMn=m°,
∵M1O平分∠AM1M2,
∴∠AM1M2=2∠A M1O,
同理∠CMnMn-1=2∠CMnO,
∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°,
又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1),
∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°
点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.
展开阅读全文