1、中考数学最值问题总结考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题 3、二次函数中最值问题)问题原型:饮马问题 造桥选址问题 (完全平方公式 配方求多项式取值 二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。解题总思路:找点关于线的对称点实现“折”转“直”ABPl几何基本模型:条件:如下左图,、是直线同旁的两个定点问题:在直线上确定一点,使的值最小方法:作点关于直线的对称点,连结交于点,则的值最小例1、如图,四边形ABCD是正方形,ABE是等边三角形,M为对角线BD(不含B点)上任意一点,
2、将BM绕点B逆时针旋转60得到BN,连接EN、AM、CM(1)求证:AMBENB;(2)当M点在何处时,AM+CM的值最小;当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为 时,求正方形的边长。例2、如图13,抛物线y=ax2bxc(a0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)(1)求抛物线的解析式(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、
3、H的坐标;若不存在,请说明理由.(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线MNBD,交线段AD于点N,连接MD,使DNMBMD,若存在,求出点T的坐标;若不存在,说明理由. 例3、如图1,四边形AEFG与ABCD都是正方形,它们的边长分别为a,b(b2a),且点F在AD上(以下问题的结果可用a,b表示) (1)求SDBF; (2) 把正方形AEFG绕点A逆时针方向旋转450得图2,求图2中的SDBF;(3) 把正方形AEFG绕点A旋转任意角度,在旋转过程中,SDBF是否存在最大值,最小值?如果存在,试求出最大值、最小值;如果不存在,请说明理由。例4、如图,
4、在平面直角坐标系中,直线与抛物线交于A,B两点,点A在x轴上,点B的纵坐标为3。点P是直线AB下方的抛物线上一动点(不与A,B重合),过点P作x轴的垂线交直线AB与点C,作PDAB于点D(1)求a,b及的值(2)设点P的横坐标为 用含的代数式表示线段PD的长,并求出线段PD长的最大值; 连接PB,线段PC把PDB分成两个三角形,是否存在适合的值,使这两个三角形的面积之比为9:10?若存在,直接写出值;若不存在,说明理由.例5、如图,C的内接AOB中,AB=AO=4,tanAOB=,抛物线经过点A(4,0)与点(-2,6).(1)求抛物线的函数解析式;(2)直线m与C相切于点A,交y于点D.动点
5、P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动;点P的速度为每秒1个单位长,点Q的速度为每秒2个单位长,当PQAD时,求运动时间t的值;(3)点R在抛物线位于x轴下方部分的图象上,当ROB面积最大时,求点R的坐标.例1、证明:(1)ABE是等边三角形,BA=BE,ABE=60MBN=60, MBN-ABN=ABE-ABN即MBA=NBE又MB=NB, AMBENB(SAS)(5分)解:(2)当M点落在BD的中点时,A、M、C三点共线,AM+CM的值最小(7分)如图,连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小(9分)理由如下:连接MN,
6、由(1)知,AMBENB, AM=EN,MBN=60,MB=NB, BMN是等边三角形 BM=MNAM+BM+CM=EN+MN+CM(10分)根据“两点之间线段最短”,得EN+MN+CM=EC最短当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长(11分)例2、 解:(1)设所求抛物线的解析式为:,依题意,将点B(3,0)代入,得: 解得:a1所求抛物线的解析式为: (2)如图6,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称, 在x轴上取一点H,连接HF、HI、HG、GD、GE,则HFHI 设过A、E两点的一次函数解析式为:ykxb(k0), 点E在抛物线上且点E
7、的横坐标为2,将x2代入抛物线,得 点E坐标为(2,3) 又抛物线图像分别与x轴、y轴交于点A、B、D 当y0时,x1或x3 当x0时,y143, 点A(1,0),点B(3,0),点D(0,3) 又抛物线的对称轴为:直线x1, 点D与点E关于PQ对称,GDGE 分别将点A(1,0)、点E(2,3)代入ykxb,得: 解得: 过A、E两点的一次函数解析式为:yx1 当x0时,y1 点F坐标为(0,1)=2 又点F与点I关于x轴对称, 点I坐标为(0,1) 又要使四边形DFHG的周长最小,由于DF是一个定值, 只要使DGGHHI最小即可 由图形的对称性和、,可知, DGGHHFEGGHHI 只有当
8、EI为一条直线时,EGGHHI最小 设过E(2,3)、I(0,1)两点的函数解析式为:,分别将点E(2,3)、点I(0,1)代入,得: 解得: 过A、E两点的一次函数解析式为:y2x1 当x1时,y1;当y0时,x; 点G坐标为(1,1),点H坐标为(,0) 四边形DFHG的周长最小为:DFDGGHHFDFEI 由和,可知: DFEI四边形DFHG的周长最小为。 (3)如图7,由题意可知,NMDMDB, 要使,DNMBMD,只要使即可, 即:设点M的坐标为(a,0),由MNBD,可得 AMNABD, 再由(1)、(2)可知,AM1a,BD,AB4 , 式可写成: 解得:或(不合题意,舍去)点M
9、的坐标为(,0)又点T在抛物线图像上, 当x时,y 点T的坐标为(,).例3、解:(1)点F在AD上,AF2=a2a2,即AF=。(2)连接DF,AF,由题意易知AFBD,四边形AFDB是梯形。DBF与ABD等高同底,即BD为两三角形的底。由AFBD,得到平行线间的距离相等,即高相等,。(3)正方形AEFG在绕A点旋转的过程中,F点的轨迹是以点A为圆心,AF为半径的圆。第一种情况:当b2a时,存在最大值及最小值,BFD的边BD=,当F点到BD的距离取得最大、最小值时,SBFD取得最大、最小值。如图,当DFBD时,SBFD的最大值=,SBFD的最小值=。第二种情况:当b=2a时,存在最大值,不存
10、在最小值,SBFD的最大值=。例4、解:(1)由,得到x=2,A(2,0)。 由,得到x=4,B(4,3)。经过A、B两点,解得。设直线AB与y轴交于点E,则E(0,1)。根据勾股定理,得AE=。PCy轴,ACP=AEO。(2)由(1)可知抛物线的解析式为。由点P的横坐标为,得P,C。PC= 。在RtPCD中, ,当m=1时,PD有最大值。存在满足条件的值,。例5、解:(1)将点A(4,0)和点(-2,6)的坐标代入中,得方程组,解之,得.抛物线的解析式为.(2)连接AC交OB于E.直线m切C于A ACm, 弦 AB=AO, .ACOB,mOB. OAD=AOB,OA=4 tanAOB=,OD
11、=OAtanOAD=4=3.作OFAD于F.则OF=OAsinOAD=4=2.4.t秒时,OP=t,DQ=2t,若PQAD,则FQ=OP= t.DF=DQFQ= t.ODF中,t=DF=1.8秒.(3)令R(x, x22x) (0x4). 作RGy轴于G 作RHOB于H交y轴于I.则RG= x,OG= x2+2x.RtRIG中,GIR=AOB ,tanGIR=.IG=x IR= x, RtOIH中,OI=IGOG=x(x2+2x)=x2x.HI=(x2x).于是RH=IRIH= x(x2 x)= x2+x= x2+x=( x)2+当x=时,RH最大.SROB最大.这时x22x=()22=.点R(,)