1、平面不规则结构的判断及调整编写:黄吉锋编写:黄吉锋 中国建筑科学研究院软件所中国建筑科学研究院软件所 目录1.平面不规则的类型2.楼层位移比3.结构周期比4.楼面凹凸不规则、楼板不连续结构的 调整和设计5.结构扭转效应控制:扭转不规则结构的 调整和设计1.1.平面不规则的类型平面不规则的类型平面不规则的类型平面不规则的类型扭转不规则凹凸不规则楼板局部不连续平面不规则的类型:扭转不规则平面不规则的类型:扭转不规则平面不规则的类型:扭转不规则平面不规则的类型:扭转不规则qq扭转不规则 单向偶然偏心地震作用下的位移比超过单向偶然偏心地震作用下的位移比超过1.21.2qq扭转特别不规则 A A类高层建
2、筑:单向偶然偏心地震作用下的位移比类高层建筑:单向偶然偏心地震作用下的位移比超过超过 1.5 1.5,或者,或者Tt/T10.90Tt/T10.90 B B类高层建筑、混合结构、复杂高层:单向偶然偏类高层建筑、混合结构、复杂高层:单向偶然偏心地震作用下的位移比超过心地震作用下的位移比超过 1.4 1.4,或者,或者Tt/T10.85Tt/T10.85 平面不规则的类型:凹凸不规则平面不规则的类型:凹凸不规则平面不规则的类型:凹凸不规则平面不规则的类型:凹凸不规则qq平面太狭长 L/B6(L/B6(抗震设防烈度抗震设防烈度6 6,7 7度)度)L/B5(L/B5(抗震设防烈度抗震设防烈度8 8,
3、9 9度)度)qq凹进太多 l/Bmax 0.35(l/Bmax 0.35(抗震设防烈度抗震设防烈度6 6,7 7度)度)l/Bmax 0.30(l/Bmax 0.30(抗震设防烈度抗震设防烈度8 8,9 9度)度)qq凸出太细 l/b 2.0(l/b 2.0(抗震设防烈度抗震设防烈度6 6,7 7度)度)l/b 1.5(l/b 1.5(抗震设防烈度抗震设防烈度8 8,9 9度)度)平面不规则的类型:凹凸不规则平面不规则的类型:凹凸不规则平面不规则的类型:凹凸不规则平面不规则的类型:凹凸不规则平面太狭长凹入太多凸出太细平面不规则的类型:凹凸不规则狭长平面实例平面不规则的类型:凹凸不规则凹凸不规
4、则平面实例平面不规则的类型:凹凸不规则凹凸不规则平面实例平面不规则的类型平面不规则的类型平面不规则的类型平面不规则的类型:楼板局部不连续楼板局部不连续楼板局部不连续楼板局部不连续qq一般不规则 有效宽度有效宽度BeBe小于典型宽度小于典型宽度B B的的50%50%:Be0.5BBe0.3AAt0.3Aqq特别不规则有效净宽度有效净宽度BeBe小于小于5 5米或一侧楼板最小有效宽度小米或一侧楼板最小有效宽度小于于2 2米米平面不规则的类型平面不规则的类型平面不规则的类型平面不规则的类型:楼板局部不连续楼板局部不连续楼板局部不连续楼板局部不连续相对有效宽度太小(30%)绝对有效宽度太小(总宽5m或
5、单侧2m)平面不规则的类型:楼板局部不连续严重楼板局部不连续平面实例:三条占全了!2.2.楼层位移比楼层位移比楼层位移比楼层位移比基本概念计算条件相关参量取值几何解释:位移比与形心转心的关系竖向变化规律,位移比立面控制楼层位移比:基本概念楼层位移比:基本概念楼层位移比:基本概念楼层位移比:基本概念楼层位移比的概念楼层层间位移比的概念楼层位移比:相关参量取值最大位移:墙顶、柱顶节点的最大位移平均位移:墙顶、柱顶节点的最大位移与最小位移之和除2最大层间位移:墙、柱层间位移的最大值平均层间位移:墙、柱层间位移的最大值与最小值之和除2不考虑无柱节点的位移!是对结构整体抗扭特性的衡量,是结构的全局指标,
6、非局部指标。为了保证位移比的全局意义,计算位移比时,应采用强制刚性楼面假定规范仅对地震作用要求位移比控制楼层位移比:计算条件楼层位移比:计算条件楼层位移比:计算条件楼层位移比:计算条件楼层位移比:计算条件楼层位移比:计算条件楼层位移比:计算条件楼层位移比:计算条件楼层位移比:几何解释楼层位移比:几何解释楼层位移比:几何解释楼层位移比:几何解释控制楼层的位移比 等价于控制楼层 形心与楼层转动中心的距离 r位移比与转动中心的关系:楼层位移比:几何解释楼层位移比:几何解释楼层位移比:几何解释楼层位移比:几何解释14320.5B1.0B1.5B2.0B2.5BrB:垂直于地震方向的楼面宽度r:形心与转
7、心在垂直于地震方向的距离楼层位移比:几何解释楼层位移比:几何解释楼层位移比:几何解释楼层位移比:几何解释BBB转动中心 CR楼面形心CSr=2.5B楼层位移比:几何解释楼层位移比:几何解释楼层位移比:几何解释楼层位移比:几何解释楼层位移比:竖向变化规律楼层位移比:竖向变化规律楼层位移比:竖向变化规律楼层位移比:竖向变化规律楼层位移比:竖向变化规律楼层位移比:竖向变化规律楼层位移比:竖向变化规律楼层位移比:竖向变化规律楼层位移比:如何进行立面控制楼层位移比:如何进行立面控制楼层位移比:如何进行立面控制楼层位移比:如何进行立面控制通过考察位移比的竖向变化规律我们知道,结构底部的位移比理论上会趋于无
8、穷大,控制底部楼层的位移比有时难以实行。笔者建议,仅对于楼面标高高于结构主体总高度1/4的楼层,才按照规范限值控制其位移比;对于地下室以及楼面标高不高于结构主体总高度的1/4的楼层,可以不必控制其位移比。楼层位移比:如何进行立面控制楼层位移比:如何进行立面控制楼层位移比:如何进行立面控制楼层位移比:如何进行立面控制控制1/4总高处的位移比小于1.5相当于控制顶层位移比小于(1+0.5/3.68)=1.136控制1/4总高处的位移比小于1.4相当于控制顶层位移比小于(1+0.4/3.68)=1.109控制1/4总高处的位移比小于1.2相当于控制顶层位移比小于(1+0.2/3.68)=1.054如
9、此看来,这个控制已经足够严格了!3.3.结构周期比结构周期比结构周期比结构周期比扭转效应与周期比的关系如何选取Tt,Tx1,Ty1结构周期比:扭转效应与周期比结构周期比:扭转效应与周期比结构周期比:扭转效应与周期比结构周期比:扭转效应与周期比结构的地震扭转反应与两个因素有关:一是偏心率,二是周期比。用公式表示就是:偏心率结构相对扭转反应周期比结构周期比:扭转效应与周期比结构周期比:扭转效应与周期比结构周期比:扭转效应与周期比结构周期比:扭转效应与周期比结构扭转效应随周期比的变化曲线周期比接近1.0时,扭转效应出现峰值结构周期比:扭转效应与周期比结构周期比:扭转效应与周期比结构周期比:扭转效应与
10、周期比结构周期比:扭转效应与周期比周期比接近1.0时,扭转效应出现峰值,故应使周期比尽量远离1.0理论上宜控制双向周期比均满足限值:实际运用时,可采用较松的做法,满足下式即可:结构周期比:如何选取结构周期比:如何选取结构周期比:如何选取结构周期比:如何选取Tt,Tx1,Ty1Tt,Tx1,Ty1结构周期比:如何选取结构周期比:如何选取结构周期比:如何选取结构周期比:如何选取Tt,Tx1,Ty1Tt,Tx1,Ty1何为扭转为主?整体振动整体振动 扭转成分超过扭转成分超过80%80%何为平动为主?整体振动整体振动 平动成分超过平动成分超过80%80%结构周期比:如何选取结构周期比:如何选取结构周期
11、比:如何选取结构周期比:如何选取Tt,Tx1,Ty1Tt,Tx1,Ty1振型振型 周周 期期 转转 角角 平动系数平动系数(X+Y)X+Y)扭转系扭转系数数 1 1.4541 3.44 0.98(0.98+0.00)1 1.4541 3.44 0.98(0.98+0.00)0.020.02 2 1.3492 123.47 0.06(0.02+0.04)2 1.3492 123.47 0.06(0.02+0.04)0.940.94 3 1.1973 91.85 0.96(0.00+0.95)3 1.1973 91.85 0.96(0.00+0.95)0.040.04 4 0.4985 4.10
12、0.97(0.96+0.01)4 0.4985 4.10 0.97(0.96+0.01)0.030.03 5 0.4653 140.25 0.06(0.03+0.02)5 0.4653 140.25 0.06(0.03+0.02)0.940.94 6 0.3877 92.42 0.62(0.00+0.62)6 0.3877 92.42 0.62(0.00+0.62)0.380.38 7 0.2381 0.27 0.99(0.99+0.00)7 0.2381 0.27 0.99(0.99+0.00)0.010.01 8 0.2182 57.47 0.05(0.02+0.04)8 0.2182 5
13、7.47 0.05(0.02+0.04)0.950.95 9 0.1699 91.58 0.97(0.00+0.96)9 0.1699 91.58 0.97(0.00+0.96)0.030.03平动为主扭转为主混合振型结构周期比:如何选取Tt,Tx1,Ty1这样的局部平动振型对应的周期不能作为验算周期比的素材,要采用强制刚性楼板假定以获得整体平动振型结构周期比:如何选取Tt,Tx1,Ty1采用强制刚性楼板假定后变成整体平扭振型结构周期比:如何选取Tt,Tx1,Ty1这样的局部扭转振型对应的周期也不能作为验算周期比的素材,要采用强制刚性楼板假定获得整体扭转振型结构周期比:如何选取Tt,Tx1,T
14、y1采用强制刚性楼板假定后变成整体扭转振型结构周期比:如何选取结构周期比:如何选取结构周期比:如何选取结构周期比:如何选取Tt,Tx1,Ty1Tt,Tx1,Ty1何为“第一”,“第二”,“第N”振型?有几个“振幅零点”就是第几阶振型 第一振型第二振型第三振型一阶振型实例结构周期比:如何选取结构周期比:如何选取结构周期比:如何选取结构周期比:如何选取Tt,Tx1,Ty1Tt,Tx1,Ty1何谓振型的“阶”?二阶振型实例结构周期比:如何选取结构周期比:如何选取结构周期比:如何选取结构周期比:如何选取Tt,Tx1,Ty1Tt,Tx1,Ty1何谓振型的“阶”?三阶振型实例结构周期比:如何选取结构周期比
15、:如何选取结构周期比:如何选取结构周期比:如何选取Tt,Tx1,Ty1Tt,Tx1,Ty1何谓振型的“阶”?结构周期比:如何选取结构周期比:如何选取结构周期比:如何选取结构周期比:如何选取Tt,Tx1,Ty1Tt,Tx1,Ty1周期比验算中所用到的周期Tt,Tx1,Ty1,均为“第一”,不应取其余。“第二”,“第三”,乃至于“第N”均为不可取。X,Y应理解为结构的刚度主轴,一般不同于 用户建模时所采用的坐标轴结构周期比:如何选取结构周期比:如何选取结构周期比:如何选取结构周期比:如何选取Tt,Tx1,Ty1Tt,Tx1,Ty1沿结构刚度主轴方向的第一侧振周期示意XY4.4.楼面凹凸不规则、楼板
16、不连续结构的调整和设计楼面凹凸不规则、楼板不连续结构的调整和设计楼面凹凸不规则、楼板不连续结构的调整和设计楼面凹凸不规则、楼板不连续结构的调整和设计合法分法基于性能的抗震设计l l主体结构主体结构 如何定义弹性板如何定义弹性板 关注有效质量系数关注有效质量系数l l弱连系楼盖弱连系楼盖l l主体结构独立工作复核主体结构独立工作复核l l构造加强构造加强结构楼面凹凸不规则、楼板不连续的调整结构楼面凹凸不规则、楼板不连续的调整结构楼面凹凸不规则、楼板不连续的调整结构楼面凹凸不规则、楼板不连续的调整通过楼面调整消除凹凸不规则或楼板不连续,基本方法两种:合法:增设楼板(拉板、拉梁或阳台板、空调设备平台
17、板)分法:设缝分割为若干规则子结构,低矮的弱连廊采用滑支座等结构楼面凹凸不规则、楼板不连续的调整结构楼面凹凸不规则、楼板不连续的调整结构楼面凹凸不规则、楼板不连续的调整结构楼面凹凸不规则、楼板不连续的调整合法:红色的拉板或蓝色的设备板结构楼面凹凸不规则、楼板不连续的调整结构楼面凹凸不规则、楼板不连续的调整结构楼面凹凸不规则、楼板不连续的调整结构楼面凹凸不规则、楼板不连续的调整分法:设防震缝或滑动铰支防震缝防震缝,滑动铰支连廊楼面凹凸不规则、楼板不连续结构的设计楼面凹凸不规则、楼板不连续结构的设计楼面凹凸不规则、楼板不连续结构的设计楼面凹凸不规则、楼板不连续结构的设计 若经分、合二法调整未果,或
18、受到客观条件限制不能作此类调整,则须对此类不规则结构采用更为严格的方法进行基于性能的抗震设计,设计要点如下:主体结构设计:中震弹性设计 考虑弹性楼板;偶然偏心、双向地震取不利;位移角及承载力均作小震、中震双控;楼面凹凸不规则、楼板不连续结构的设计楼面凹凸不规则、楼板不连续结构的设计楼面凹凸不规则、楼板不连续结构的设计楼面凹凸不规则、楼板不连续结构的设计如何定义弹性楼板楼板局部大开洞造成的明显的薄弱部位应定义弹性板楼面凹凸不规则、楼板不连续结构的设计如何定义弹性楼板楼板开洞较多或较复杂时应整层整层定义弹性板楼面凹凸不规则、楼板不连续结构的设计如何定义弹性楼板多塔楼之间的连廊应定义成弹性板楼面凹凸
19、不规则、楼板不连续结构的设计考虑楼板的几种方式刚性楼板假定刚性楼板假定面内刚度无限大,面外刚度为零适用范围适用范围楼板面内刚度足够大的工程,但板厚较小(0.85,不满足规范要求。结构扭转效应控制:单塔楼结构的平面布局调整示例结构扭转效应控制:单塔楼结构的平面布局调整示例转换层及以下平面(计3层)转换层以上平面(计11层)序号 周期 转角 属性 扭转成分 平动成分 1 1.578510 8.1 X 0.14 0.86 2 1.455939 -22.4 TORSION 0.81 0.19 3 1.266284 91.4 Y 0.06 0.94层号 节点 最大位移 平均位移 位移比 1 2 1.54
20、 1.18 1.30 2 186 4.26 3.32 1.28 3 316 6.18 4.93 1.25 4 547 6.68 5.41 1.23 5 797 7.38 6.08 1.21 6 1033 8.16 6.82 1.20 结构扭转效应控制:单塔楼结构的平面布局调整示例调整之前的周期比和位移比周期比=0.9220.85结构扭转效应控制:单塔楼结构的平面布局调整示例通过外周加墙调整后的转换层及以下平面转换层以上平面 不必调整!序号 周期 转角 属性 扭转成分 平动成分 1 1.436491 -1.8 X 0.02 0.98 2 1.086506 87.5 Y 0.01 0.99 3 1
21、.045773 57.8 TORSION 0.92 0.08层号 节点 最大位移 平均位移 位移比 1 48 0.98 0.89 1.10 2 223 2.77 2.42 1.14 3 358 4.24 3.59 1.18 4 736 4.78 4.04 1.18 5 986 5.56 4.71 1.18 6 1221 6.43 5.45 1.18 结构扭转效应控制:单塔楼结构的平面布局调整示例调整之后的周期比和位移比周期比=0.728 0.85 调整后周期比:Tt/T1=1.046/1.436=0.728 0.852.调整前最大位移比:Umax/Uaver=1.30 调整后最大位移比:Uma
22、x/Uaver=1.18汇总本工程调整前后的扭转指标变化:3.调整前振型纯粹性(前三个):0.86 0.81 0.94 调整后振型纯粹性(前三个):0.98 0.99 0.92 结构扭转效应控制:单塔楼结构的平面布局调整示例周期比不满足要求的实际工程平面几何上规则、抗侧刚度大但周期比超限 振型号振型号 周周 期期 转转 角角 平动系数平动系数(X+Y)X+Y)扭转系数扭转系数 1 1.5742 83.44 0.06(0.00+0.06)0.941 1.5742 83.44 0.06(0.00+0.06)0.94 2 1.4524 90.89 0.94(0.00+0.94)0.06 2 1.45
23、24 90.89 0.94(0.00+0.94)0.06 3 1.2665 0.45 1.00(1.00+0.00)0.00 3 1.2665 0.45 1.00(1.00+0.00)0.00 4 0.5302 90.56 0.03(0.00+0.03)0.97 4 0.5302 90.56 0.03(0.00+0.03)0.97 5 0.4025 103.18 0.97(0.05+0.92)0.03 5 0.4025 103.18 0.97(0.05+0.92)0.03 6 0.3748 14.35 1.00(0.94+0.05)0.00 6 0.3748 14.35 1.00(0.94+0
24、.05)0.00 7 0.3631 138.63 0.50(0.29+0.21)0.50 7 0.3631 138.63 0.50(0.29+0.21)0.50 8 0.3082 93.37 0.05(0.00+0.05)0.95 8 0.3082 93.37 0.05(0.00+0.05)0.95 9 0.2126 92.74 0.06(0.00+0.06)0.94 9 0.2126 92.74 0.06(0.00+0.06)0.94第一振型为扭转结构扭转效应控制:单塔楼结构的平面布局调整示例周期比不满足要求的实际工程平面平面貌似规整的剪力墙结构,第一振型为扭转结构扭转效应控制:单塔楼结构的
25、平面布局调整示例周期比不满足要求的实际工程平面平面貌似规整的框筒结构,第一振型为扭转几何上规则,但周期比超限结构扭转效应控制:单塔楼结构的平面布局调整小结周期比侧重控制什么?周期比侧重控制的是侧向刚度与扭转刚度之间的一种相对 关系,而非其绝对大小,它的目的是使抗侧力构件的平面布 置兼顾抗侧刚度和抗扭刚度,从而有效减小地震扭转效应。周期比控制的认识误区 抗侧力刚度大,就意味着抗扭特性好 几何上、视觉上很规则,就意味着抗扭特性好记住改善周期比的两招 抗侧力刚度均匀布置 相对加强外圈非也!结构扭转效应控制结构扭转效应控制结构扭转效应控制结构扭转效应控制:多塔楼结构的平面布局调整多塔楼结构的平面布局调
26、整多塔楼结构的平面布局调整多塔楼结构的平面布局调整总原则各塔之间宜均衡同一塔内宜均衡位移比采用整体模型计算,且宜对每一楼层的各个塔块采用强制刚性楼板假定周期比可分塔验算,上部有强连接的多塔应补充验算整体周期比结构扭转效应控制结构扭转效应控制结构扭转效应控制结构扭转效应控制:多塔楼结构的平面布局调整多塔楼结构的平面布局调整多塔楼结构的平面布局调整多塔楼结构的平面布局调整同基多塔结构:验算分塔周期比 对于同基多塔结构,将各个塔楼与裙房交界处、与连廊交界处切开,只保留各单塔楼主体结构范围以内的部分,从而形成多个独立的单塔。对每个独立的单塔,依据上节调整控制其扭转效应、验算其周期比。结构扭转效应控制结
27、构扭转效应控制结构扭转效应控制结构扭转效应控制:多塔楼结构的平面布局调整多塔楼结构的平面布局调整多塔楼结构的平面布局调整多塔楼结构的平面布局调整无上连多塔的分拆示意结构扭转效应控制结构扭转效应控制结构扭转效应控制结构扭转效应控制:多塔楼结构的平面布局调整多塔楼结构的平面布局调整多塔楼结构的平面布局调整多塔楼结构的平面布局调整有上连多塔的分拆示意结构扭转效应控制结构扭转效应控制结构扭转效应控制结构扭转效应控制:多塔楼结构的平面布局调整多塔楼结构的平面布局调整多塔楼结构的平面布局调整多塔楼结构的平面布局调整上部有强连接的同基多塔结构:验算整体周期比 如果多塔结构存在足够强的上部连接,以至于这如果多
28、塔结构存在足够强的上部连接,以至于这些连接能够使些连接能够使两个或多个塔楼形成整体的扭转振两个或多个塔楼形成整体的扭转振型型,那么此时应进一步在分拆调整验算的基础上,那么此时应进一步在分拆调整验算的基础上,将这几个塔楼作为一个整体(即看成一个复合的将这几个塔楼作为一个整体(即看成一个复合的单塔)进行结构计算、进行周期比验算。单塔)进行结构计算、进行周期比验算。结构扭转效应控制结构扭转效应控制结构扭转效应控制结构扭转效应控制:多塔楼结构的平面布局调整多塔楼结构的平面布局调整多塔楼结构的平面布局调整多塔楼结构的平面布局调整上部强连接的多塔应验算整体周期比结构扭转效应控制:基于性能的抗震设计结构扭转
29、效应控制:基于性能的抗震设计结构扭转效应控制:基于性能的抗震设计结构扭转效应控制:基于性能的抗震设计结构扭转效应控制:基于性能的抗震设计中震中震/大震弹性计算大震弹性计算1 1)地震影响系数最大值)地震影响系数最大值ALPHAmax ALPHAmax 按中震按中震(2.8(2.8倍小震倍小震)或大震或大震(4.5-6(4.5-6倍小震倍小震)取值取值2)2)取消组合内力调整(强柱弱梁,强剪弱弯)取消组合内力调整(强柱弱梁,强剪弱弯)程序使用:程序使用:1 1)按中震或大震输入)按中震或大震输入ALPHAmaxALPHAmax2)2)构件抗震等级指定为构件抗震等级指定为4 4级级结构扭转效应控制
30、:基于性能的抗震设计这样来做中震弹性计算结构扭转效应控制:基于性能的抗震设计中震中震/大震不屈服计算大震不屈服计算1 1)地震影响系数最大值)地震影响系数最大值ALPHAmax ALPHAmax 按中震按中震(2.8(2.8倍小震倍小震)或大震或大震(4.5-6(4.5-6倍小震倍小震)取值取值2)2)取消组合内力调整(强柱弱梁,强剪弱弯)取消组合内力调整(强柱弱梁,强剪弱弯)3 3)荷载作用分项系数取)荷载作用分项系数取1.01.0(组合值系数不变)(组合值系数不变)4)4)材料强度取标准值材料强度取标准值5 5)抗震承载力调整系数抗震承载力调整系数 Rre Rre 取取1.01.0程序使用
31、:程序使用:1 1)按中震或大震输入)按中震或大震输入ALPHAmaxALPHAmax2)2)点开点开“按中震不屈服或大震不屈服做结构设计按中震不屈服或大震不屈服做结构设计”结构扭转效应控制:基于性能的抗震设计这样来做中震不屈服计算参考文献参考文献参考文献参考文献1.1.高层建筑混凝土结构技术规程高层建筑混凝土结构技术规程JGJ3-2002JGJ3-20022.2.徐培福,傅学怡,王翠坤,肖从真徐培福,傅学怡,王翠坤,肖从真.复杂复杂 高层建筑结构设计高层建筑结构设计.中国建筑工业出版社中国建筑工业出版社.2005 2005年年2 2月月.3.3.徐培福,黄吉锋,韦承基徐培福,黄吉锋,韦承基.高层建筑结构在高层建筑结构在 地震作用下的扭转振动效应地震作用下的扭转振动效应.建筑科学,建筑科学,2000 2000年第年第1 1期期