1、 系统分析的任务是对给定的系统模型和输系统分析的任务是对给定的系统模型和输入信号求解系统的输出响应。系统分析的方法入信号求解系统的输出响应。系统分析的方法很多,其中时域分析法不通过任何变换,在分很多,其中时域分析法不通过任何变换,在分析过程涉及的函数变量均为时间,直接求解系析过程涉及的函数变量均为时间,直接求解系统的微分方程和积分方程,该方法直观且物理统的微分方程和积分方程,该方法直观且物理概念清楚。概念清楚。所谓系统的数学模型是指系统基本特性的数所谓系统的数学模型是指系统基本特性的数学抽象。学抽象。为了确定一个线性时不变连续系统对给定激为了确定一个线性时不变连续系统对给定激励的响应,应建立线
2、性系统的数学模型。线性时励的响应,应建立线性系统的数学模型。线性时不变连续系统的输入输出关系是用线性常系数微不变连续系统的输入输出关系是用线性常系数微分方程来描述的。因此首先需列出描述系统特性分方程来描述的。因此首先需列出描述系统特性的微分方程表达式,然后再求出其满足初始条件的微分方程表达式,然后再求出其满足初始条件的解。的解。2.1 连续系统的微分方程及其算子表示连续系统的微分方程及其算子表示2.1.1 表征电路元件特性的关系式表征电路元件特性的关系式2.1.2 电路基本定律电路基本定律1基尔霍夫电流定律(基尔霍夫电流定律(KCL)2基尔霍夫电压定律(基尔霍夫电压定律(KVL)2.1.3 机
3、械系统常用元件所遵循的物理定律机械系统常用元件所遵循的物理定律例例2.1.1 如图如图2.1所示所示RLC串并联电路,输入激励是串并联电路,输入激励是电流源电流源iS(t),试列出以电流及,试列出以电流及R1上电压上电压u1(t)为输出为输出响应变量的方程式。响应变量的方程式。微分方程的建立微分方程的建立图图2.1 例例2.1.1图图解:(解:(1)根据)根据KVL,列出电压方程,列出电压方程对上式求导,考虑到对上式求导,考虑到 得得(2)根据)根据KCL,有,有因而因而 代入原方程得代入原方程得整理上式,可得以电流整理上式,可得以电流 为输出响应变量的方程式为为输出响应变量的方程式为 以上的
4、电压为输出响应变量的方程式为:以上的电压为输出响应变量的方程式为:对于复杂系统,设激励信号为对于复杂系统,设激励信号为 系统响应为系统响应为 则可以用一高阶的微分方程来表示,其一般形式为则可以用一高阶的微分方程来表示,其一般形式为2.1.4 微分方程的求解(经典法)微分方程的求解(经典法)描述描述LTI连续系统的微分方程是一线性常系连续系统的微分方程是一线性常系数常微分方程,一般形式如下:数常微分方程,一般形式如下:由微分方程的经典解法可知,上面方程的完全由微分方程的经典解法可知,上面方程的完全解由两部分组成:齐次解和特解。齐次解为方程解由两部分组成:齐次解和特解。齐次解为方程对应的齐次微分方
5、程的解,以对应的齐次微分方程的解,以 表示,特解以表示,特解以 表示。下面分别讨论齐次解和特解的求法。表示。下面分别讨论齐次解和特解的求法。1.1.齐次解齐次解 由特征方程由特征方程求出特征根求出特征根写出齐次解形式写出齐次解形式注意重根、复根情况处理方法。注意重根、复根情况处理方法。2.特特 解解根据微分方程右端函数式形式,设含待定系数的根据微分方程右端函数式形式,设含待定系数的特数的特解函数式特数的特解函数式代入原方程,比较系数定出代入原方程,比较系数定出特解。特解。3.全全 解解齐次解齐次解+特解,由初始条件定出齐次解系数特解,由初始条件定出齐次解系数 。1.齐次解齐次解 由特征方程由特
6、征方程求出特征根求出特征根写出齐次解形式写出齐次解形式 齐次解是满足式上式中右端激励及其各阶导数齐次解是满足式上式中右端激励及其各阶导数都为零的齐次微分方程的解。即:都为零的齐次微分方程的解。即:其特征方程:其特征方程:特征方程的特征方程的 个根个根 、,、,称为微分方程的称为微分方程的特征根。特征根。根据特征根的取值情况不同,齐次解可以有不根据特征根的取值情况不同,齐次解可以有不同的形式同的形式(1)特征根均为单根。即所有特征根都互不相同)特征根均为单根。即所有特征根都互不相同(即无重根),则微分方程的齐次解(即无重根),则微分方程的齐次解(2)特征根有重根)特征根有重根。若若 是特征方程的
7、是特征方程的 重根,即有重根,即有 ,而其,而其余余 个根都是单根,则微分方程的齐次解中相应个根都是单根,则微分方程的齐次解中相应于的部分有项,即于的部分有项,即(3)特征根为一对共轭复根。则微分方程的齐特征根为一对共轭复根。则微分方程的齐次解为次解为(4)特征根为一对重复根。即共有重的复根,)特征根为一对重复根。即共有重的复根,则微分方程的齐次解为则微分方程的齐次解为 例例2.1.2 求微分方程求微分方程 的齐次解的齐次解解:由特征解:由特征 方程,解得特征根方程,解得特征根因此该方程的齐次解为因此该方程的齐次解为其中,待定系数其中,待定系数 由初始条件确定。由初始条件确定。2.特解特解 特
8、解的函数形式与激励函数的形式有关,即特解的函数形式与激励函数的形式有关,即可根据自由项的函数形式来选择,如下表所示。可根据自由项的函数形式来选择,如下表所示。例例2.1.3 已知微分方程已知微分方程 求下列两种情况下微分方程的特解求下列两种情况下微分方程的特解解:(解:(1)因为)因为 ,将,将 代入方程,得方程代入方程,得方程右边的自由项为右边的自由项为查表查表2.1可知,特解的一般形式为可知,特解的一般形式为所以所以代入原方程得代入原方程得由对应项系数相等得由对应项系数相等得所以方程的特解为所以方程的特解为(2)因为,所以方程右边的自由项为)因为,所以方程右边的自由项为查上表可知,特解的一
9、般形式为查上表可知,特解的一般形式为所以所以代入原方程得代入原方程得解得解得所以方程的特解为所以方程的特解为3完全解完全解微分方程的完全解为齐次解与特解之和,即微分方程的完全解为齐次解与特解之和,即根据上面的讨论,对于根据上面的讨论,对于 阶系统,齐次解阶系统,齐次解 中有中有个待定系数。这些待定系数由下面个待定系数。这些待定系数由下面 个初始条个初始条件来确定:件来确定:例例2.1.4 试求微分方程试求微分方程当当 ,初始条件为,初始条件为 ,时,时的完全解。的完全解。解:(解:(1)求齐次解。)求齐次解。按照题意,特征方程为按照题意,特征方程为其特征根其特征根 均为单根,则其齐次解均为单根
10、,则其齐次解为为(2)求特解。)求特解。将将 代入方程的右端,得自由项为代入方程的右端,得自由项为 ,其中其中 与一个特征根与一个特征根 相重,故特解相重,故特解将将 代入上述微分方程,得代入上述微分方程,得所以所以 因此特解因此特解所以该方程的完全解是所以该方程的完全解是由初始条件由初始条件 有有解得解得 ,因此完全解为,因此完全解为 4微分方程的物理意义微分方程的物理意义2.2.5 2.2.5 用算子符号表示微分方程用算子符号表示微分方程1 1算子的定义算子的定义(1 1)微分算子)微分算子 ,定义如下:,定义如下:(2 2)积分算子)积分算子 ,定义如下:,定义如下:于是上面提到的于是上
11、面提到的激励信号激励信号 和系统响应和系统响应 又可又可写为写为其中其中 被称为响应对激励的传输算子或转移算子。被称为响应对激励的传输算子或转移算子。系统输入输出模型如下图所示。系统输入输出模型如下图所示。系统的传输算子表示系统的传输算子表示 例例2.1.5 2.1.5 用算子法表微分方程。用算子法表微分方程。解:根据微分算子的定义,上述微分方程解:根据微分算子的定义,上述微分方程可表示为可表示为还可将上式改写为还可将上式改写为则传输算子或转移算子则传输算子或转移算子 为为2 2算子符号运算的基本规则算子符号运算的基本规则(1 1)对算子多项式可以进行因式分解,但不能)对算子多项式可以进行因式
12、分解,但不能进行公因子相消。进行公因子相消。(2 2)算子的乘除顺序不能随意颠倒,即)算子的乘除顺序不能随意颠倒,即这表明这表明“先乘后除先乘后除”的算子运算(即先微分后积的算子运算(即先微分后积分)分)不能相消;而不能相消;而“先除后乘先除后乘”(先积分后(先积分后微分)微分)的算子运算可以相消。的算子运算可以相消。例:设某连续系统的算子为例:设某连续系统的算子为试写出此系统的输入输出微分方程。试写出此系统的输入输出微分方程。解:令系统的输入为解:令系统的输入为 ,输出为,输出为 ,由给,由给定传输算子定传输算子 写出此系统算子方程为写出此系统算子方程为即即 与与 之间的关系为之间的关系为所
13、以系统的输入输出微分方程为所以系统的输入输出微分方程为2.2 2.2 零输入响应和零状态响应零输入响应和零状态响应 线性非时变系统的完全响应也可分解为零输线性非时变系统的完全响应也可分解为零输入响应和零状态响应。在激励信号加入系统之入响应和零状态响应。在激励信号加入系统之前,系统原有的储能(如电容上的初始电压,前,系统原有的储能(如电容上的初始电压,电感上的初始电流等)构成了系统的初始状态。电感上的初始电流等)构成了系统的初始状态。2.2.1 2.2.1 零输入响应的求取零输入响应的求取2.2.2 2.2.2 零状态响应的求取零状态响应的求取 其中零状态响应的完全解的系数应在零状其中零状态响应
14、的完全解的系数应在零状态响应的全解中由初始条件态响应的全解中由初始条件 确定。确定。2.2.3 2.2.3 系统的完全响应系统的完全响应 系统的完全响应按性质可分为自由响应和系统的完全响应按性质可分为自由响应和强迫响应,按来源可分为零输入响应和零状态强迫响应,按来源可分为零输入响应和零状态响应,它们的关系为响应,它们的关系为式中,式中,。例例2.2.1 2.2.1 已知某系统的微分方程模型为已知某系统的微分方程模型为初始条件初始条件 ,输入,输入 ,求,求系统的零输入响应系统的零输入响应 ,零状态响应,零状态响应 以及完以及完全响应全响应 。解:(解:(1 1)求零输入响应)求零输入响应 。由
15、特征方程由特征方程得单根得单根 ,因此零输入响应为,因此零输入响应为将初始条件将初始条件 代入以上方程,得到代入以上方程,得到解此方程组得:解此方程组得:所以此系统的零输入响应为所以此系统的零输入响应为(2 2)求零状态响应)求零状态响应 。根据给定的输入根据给定的输入 ,设特解,设特解 ,带入系统微分方程得带入系统微分方程得即即 。因此,零状态响应的特解、齐次。因此,零状态响应的特解、齐次解和完全解分别为解和完全解分别为将零状态响应的初始条件将零状态响应的初始条件 代入上式代入上式解得解得因此,此系统的零状态响应为因此,此系统的零状态响应为(3 3)求系统的完全响应。)求系统的完全响应。其中
16、,其中,是系统的零输入响应,系统完是系统的零输入响应,系统完全响应全响应中的前两项中的前两项 是此系统的自由响应。是此系统的自由响应。2.3 2.3 连续系统的冲激响应和阶跃响应连续系统的冲激响应和阶跃响应 连续线性非时变系统的冲激响应定义为在连续线性非时变系统的冲激响应定义为在系统的初始状态为零的条件下,以单位冲激信系统的初始状态为零的条件下,以单位冲激信号激励系统所产生的输出响应,以号激励系统所产生的输出响应,以 表示。表示。由于系统冲激响应要求系统在零状态条件下,由于系统冲激响应要求系统在零状态条件下,且输入激励为单位冲激信号且输入激励为单位冲激信号 ,因而冲激响,因而冲激响应应 仅取决
17、于系统的内部结构及其元件参数。仅取决于系统的内部结构及其元件参数。因此,系统的冲激响应因此,系统的冲激响应 可以表征系统本身可以表征系统本身的特性。的特性。2.3.1 2.3.1 单位冲激信号(函数)单位冲激信号(函数)的定义的定义单位冲激函数的定义单位冲激函数的定义 冲激信号及延时冲激信号冲激信号及延时冲激信号 冲激信号具有强度,其强度就是冲激信号对时间冲激信号具有强度,其强度就是冲激信号对时间的定积分值,如表示该冲激信号的强度为,即的定积分值,如表示该冲激信号的强度为,即有有 。2.3.2 2.3.2 冲激函数的性质冲激函数的性质1 1取样特性取样特性 的取样特性也称为的取样特性也称为 的
18、乘积特性。的乘积特性。例:利用例:利用 的性质计算下列式子。的性质计算下列式子。解:解:2 2筛选特性筛选特性 的筛选特性也称为的筛选特性也称为 的积分特性。的积分特性。例:利用例:利用 的性质计算下列式子。的性质计算下列式子。解:(解:(1 1)(因为冲激在积分区间(因为冲激在积分区间 内)内)(2 2)(因为冲激不(因为冲激不在积分区间在积分区间 内)内)3 3 是偶函数,即是偶函数,即2.3.3 2.3.3 用冲激函数用冲激函数 表示信号表示信号考虑到考虑到 函数的偶函数的特性,即函数的偶函数的特性,即或或2.3.4 2.3.4 冲激响应冲激响应1 1冲激响应的定义冲激响应的定义冲激响应
19、示意图冲激响应示意图 2 2冲激响应的求法冲激响应的求法和和 的对应关系的对应关系(2 2)当)当 时,时,(3 3)当)当 时,时,当当 时,时,中除了包含指数项中除了包含指数项 和冲和冲激函数激函数 外,还将包含有直到外,还将包含有直到 的冲激函的冲激函数数 的各阶导数。的各阶导数。例:已知例:已知 ,求,求 。故故2.3.5 2.3.5 单位阶跃信号单位阶跃信号单位阶跃函数单位阶跃函数 2.3.6 2.3.6 阶跃响应阶跃响应1 1阶跃响应的定义阶跃响应的定义阶跃响应示意图阶跃响应示意图 2 2阶跃响应阶跃响应 的求法的求法 阶跃响应阶跃响应 的求解方法之一是根据线性系统的求解方法之一是
20、根据线性系统的积分性,可通过将的积分性,可通过将 进行积分而求得。即进行积分而求得。即例:给定如下图所示电路,求电流例:给定如下图所示电路,求电流 对激励对激励 的阶跃响应的阶跃响应 。解:(解:(1 1)列写电路的微分方程。)列写电路的微分方程。列结点方程得列结点方程得所以系统的阶跃响应为所以系统的阶跃响应为2.4 2.4 卷积积分卷积积分 根据根据LTILTI系统的性质,如果将作用于系统的性质,如果将作用于LTILTI系系统的输入信号分解,而且每个分量作用于系统统的输入信号分解,而且每个分量作用于系统的响应容易求得。那么,根据叠加原理,将各的响应容易求得。那么,根据叠加原理,将各个分量产生
21、的响应求和即可得原输入信号引起个分量产生的响应求和即可得原输入信号引起的响应。的响应。卷积法的原理就是将信号分解成许多冲激卷积法的原理就是将信号分解成许多冲激信号之和,借助系统的冲激响应,求解线性时信号之和,借助系统的冲激响应,求解线性时不变系统对任意激励信号的零状态响应。它也不变系统对任意激励信号的零状态响应。它也是时域与变换域方法之间相联系的重要手段。是时域与变换域方法之间相联系的重要手段。2.4.1 2.4.1 卷积积分的推导卷积积分的推导 函数分解为窄脉冲函数分解为窄脉冲2.4.2 2.4.2 卷积积分的图解法卷积积分的图解法例:设某系统的激励信号例:设某系统的激励信号 和冲激响应和冲
22、激响应 分别分别如下图(如下图(a a)和()和(b b)所示。求该系统的零状态响)所示。求该系统的零状态响应应 ,并画出,并画出 的波形。的波形。解:将解:将 反折,得反折,得 ,如图(,如图(c c)所示。由)所示。由图可见,图可见,保持不动,将保持不动,将 平移平移 ,得,得,如图(,如图(d d)所示。)所示。其计算结果如下其计算结果如下:(2)2.5.3 2.5.3 卷积积分的性质卷积积分的性质(1 1)卷积的代数运算)卷积的代数运算交换律交换律 即:即:例:例:,求求 。解法一:将解法一:将 反褶反褶由于所以同理可得于是分配律分配律结合律结合律(2 2)卷积的微分与积分)卷积的微分
23、与积分卷积的微分卷积的微分 卷积的积分卷积的积分例:设有两个函数分别为例:设有两个函数分别为 求这两个函数的卷积求这两个函数的卷积 。利用卷积的微分得利用卷积的微分得(3 3)函数与冲激函数的卷积)函数与冲激函数的卷积2.5.4 2.5.4 卷积积分的数值解卷积积分的数值解卷积积分的数值解就是卷积积分的近似计算。卷积积分的数值解就是卷积积分的近似计算。2.6 2.6 系统的时域分析法举例系统的时域分析法举例例:已知一系统的微分方程为例:已知一系统的微分方程为 ,且且 。求输入为。求输入为 时的输出响应时的输出响应解:特征方程和特征根分别为解:特征方程和特征根分别为则齐次解为则齐次解为令特解为令
24、特解为将将 代入微分方程,可求出系数代入微分方程,可求出系数 所以特解为所以特解为则其完全解为由于该系统的初始状态不产生跳变,所以 ,代入上式得最后得到系统的输出响应为2.72.7利用利用MATLABMATLAB进行系统的时域分析进行系统的时域分析2.7.12.7.1连续时间系统零状态响应的求解连续时间系统零状态响应的求解例:如下图所示的电路系统中,电容器极板上电例:如下图所示的电路系统中,电容器极板上电荷量与输入电压的关系为荷量与输入电压的关系为设电感系数为设电感系数为L L=1H=1H,电阻,电阻R R=10=10,电容器的电容,电容器的电容C C=5mF=5mF,系统的初始储能为零,若外
25、加电压,系统的初始储能为零,若外加电压 是是振幅为振幅为10V10V、频率、频率1Hz1Hz的正弦信号,求电容器极板的正弦信号,求电容器极板上的电荷量上的电荷量 。解:由已知条件,系统的输入信号为解:由已知条件,系统的输入信号为系统的微分方程为系统的微分方程为计算电荷量计算电荷量 的的MATLABMATLAB程序如下程序如下程序运行结果下图所示。程序运行结果下图所示。2.7.2 2.7.2 利用利用MATLABMATLAB求单位冲激响应和单位阶跃响求单位冲激响应和单位阶跃响应应系统的单位冲激响应:系统的单位冲激响应:系统的单位阶跃响应:系统的单位阶跃响应:其中其中y y为输出响应;为输出响应;
26、syssys为由为由tftf,zpkzpk或或ssss建立的建立的系统模型;系统模型;t t为仿真时间区段(可选)。为仿真时间区段(可选)。例:若系统的微分方程为例:若系统的微分方程为计算此系统的单位冲激响应和单位阶跃响应的计算此系统的单位冲激响应和单位阶跃响应的MATLABMATLAB程序如下程序如下程序运行结果如下图(1)和(2)所示。图(图(1 1)单位冲激响应曲线)单位冲激响应曲线 图(图(2 2)单位阶跃响应曲线)单位阶跃响应曲线本章小结本章小结1为了确定一个线性时不变连续系统对给定激为了确定一个线性时不变连续系统对给定激励的响应,应建立线性系统的数学模型。线性时励的响应,应建立线性
27、系统的数学模型。线性时不变连续系统的输入输出关系是用线性常系数微不变连续系统的输入输出关系是用线性常系数微分方程来描述的。因此首先需列出描述系统特性分方程来描述的。因此首先需列出描述系统特性的微分方程表示式,然后再求出其满足初始条件的微分方程表示式,然后再求出其满足初始条件的解。根据电路元件或机械元件的基本定律,列的解。根据电路元件或机械元件的基本定律,列写出系统的微分方程,进而求出系统微分方程的写出系统的微分方程,进而求出系统微分方程的齐次解与特解,并利用算子符号表示系统的数学齐次解与特解,并利用算子符号表示系统的数学模型。模型。2 2线性非时变系统的完全响应线性非时变系统的完全响应 也可分
28、解为零也可分解为零输入响应输入响应 和零状态响应和零状态响应 。线性非时变。线性非时变系统的全响应系统的全响应 ,本章第二小节,本章第二小节介绍了系统的零输入响应和零状态响应的求法,介绍了系统的零输入响应和零状态响应的求法,并举例说明。并举例说明。3 3本章第三小节介绍了冲激函数与阶跃函数的本章第三小节介绍了冲激函数与阶跃函数的定义、冲击函数的性质、用冲激函数表示一般定义、冲击函数的性质、用冲激函数表示一般信号的方法、系统的冲激响应信号的方法、系统的冲激响应 和阶跃响应和阶跃响应 应应 的定义和求法。的定义和求法。4 4卷积法在信号和系统理论中占有重要地位,卷积法在信号和系统理论中占有重要地位,随着理论研究的深入和计算机技术的发展,卷积随着理论研究的深入和计算机技术的发展,卷积法得到了更广泛的应用。本章介绍了卷积积分的法得到了更广泛的应用。本章介绍了卷积积分的推导、卷积积分的图解法及其性质和对一些无法推导、卷积积分的图解法及其性质和对一些无法用确定的数学模型来表达的测量结果进行卷积处用确定的数学模型来表达的测量结果进行卷积处理时所用到的数值计算。理时所用到的数值计算。5 5对本章所介绍的是与分析方法进行举例,并对本章所介绍的是与分析方法进行举例,并利用功能强大的信号分析与处理软件利用功能强大的信号分析与处理软件MATLABMATLAB进行进行了系统的时域分析。了系统的时域分析。