收藏 分销(赏)

2024年AIGC应用层十大趋势白皮书.pdf

上传人:宇*** 文档编号:1508574 上传时间:2024-04-29 格式:PDF 页数:48 大小:7.70MB
下载 相关 举报
2024年AIGC应用层十大趋势白皮书.pdf_第1页
第1页 / 共48页
2024年AIGC应用层十大趋势白皮书.pdf_第2页
第2页 / 共48页
2024年AIGC应用层十大趋势白皮书.pdf_第3页
第3页 / 共48页
2024年AIGC应用层十大趋势白皮书.pdf_第4页
第4页 / 共48页
2024年AIGC应用层十大趋势白皮书.pdf_第5页
第5页 / 共48页
点击查看更多>>
资源描述

1、序言一、AIGC技术进步推动产业变革二、年AIGC应用层十大预测趋势一:应用层创新成为 AIGC产业发展的确定方向趋势二:大模型从“赶时髦”到“真有用”,成为提效手段趋势三:专属、自建模型将在中大型企业涌现趋势四:多模态大模型塑造“多边形战士”应用趋势五:AI Agent是大模型落地业务场景的主流形式趋势六:AIGC加速超级入口的形成趋势七:业务流程迈向“无感智能”趋势八:应用从云原生走向AI原生趋势九:AIGC逐步普惠化趋势十:智能涌现是把双刃剑,需要与之匹配的安全措施三、IDC 建议.对终端用户.对生态开发企业四、关于钉钉.钉钉产品的价值主张、创新性.产品解决方案CONTENTS我国正在经

2、历经济发展的重要时刻,以生成式人工智能等为代表的智能经济活动逆势增长,成为我国推动经济持续增长、构筑科技创新和产业升级之基,也成为支撑经济体系现代化的新引擎。工业和信息化部的统计数据显示,月份,我国软件和信息服务业务收入亿元,同比增长.%。整个行业的增长率要远高于同期GDP的增长率。大模型、AIGC是当前全球数字经济发展的热点和趋势,也是人工智能重要的核心技术。各类科技大公司、创新型公司展开投入竞赛。然而人们往往低估新技术的长期影响力,面对AIGC技术,我们既要抓住机遇立即行动,也要为人工智能的长跑做长期打算,从长布局。AIGC的应用落地对于推动我国人工智能产业快速、持续、健康发展具有非常重要

3、的作用。融入企业运营、紧贴应用场景,解决应用落地的最后一公里,才能真正发挥大模型、AIGC等新技术、新产品的作用,实现整个AI产业链和生态的繁荣。大模型、AIGC的应用落地也将创新产业生态模式,MaaS、PaaS将成为智能经济时代的重要业态。目前已有的基础大模型很难直接应用于各行业领域,企业需要结合自身的行业特点和专业知识,研发出可嵌入MaaS和PaaS的适合企业自身的行业大模型、专属大模型或场景大模型。既能避免开发大模型所需要的大量投入和人才,又能充分利用大模型的通用能力,以实现自己个性化的需求。当前,以钉钉为代表的国内AI应用厂商已经在AIGC的应用落地方面做出了有益的尝试,在企业内部推动

4、人机协同、智能决策等先进工作模式的实施,为广大中小企业提供易于使用、功能强大的AI PaaS工具和服务,有望进一步增强我国实体企业、软件行业生态在智能经济的繁荣和发展的作用。年将是AI的产业年,我们将看到越来越多的创新应用场景和产品形态不断涌现。中国是网络大国,也将是AI应用大国。然而,我们也应清醒地认识到AIGC的发展并非一帆风顺。数据隐私、安全问题、伦理挑战以及法规适应性等问题都需要被予以充分的关注和妥善的解决。这需要政府部门、科研机构、产业界以及各行各业的用户共同参与到AIGC的健康发展进程中来。我们要秉持开放创新的精神,加强跨领域、跨行业的合作,共同构建一个包容、公平、可持续的生态环境

5、。展望未来,AIGC技术必将成为推动我国科技产业变革、提升企业效能、促进实体经济高质量发展的重要引擎。中国有望在人工智能领域实现跨越式发展。AIGC应用层十大趋势白皮书是对当下最热门的AI研究方向一个很好的呼应,从AI Agent、专属模型、超级入口、多模态大模型、AI原生等维度定义了未来AIGC应用的走向,期望这份白皮书能给读者以启示。邬贺铨 中国工程院院士企业数字化转型进入深海区,加速向广度和深度进发。企业正在将数字化转型扩展至所有业务流程和运营中,这涉及到更深入的数据分析、流程自动化、广泛的协作、智能决策支持等的开发和应用,更加注重于通过技术创新来实现业务模式的重塑和新的价值创造。技术大

6、变革驱动智能数字业务时代来临。当前的技术变革,特别是人工智能、机器学习、云计算和大数据等领域的快速发展,已经开启一个全新的智能数字业务时代,即充分发挥数据作为生产要素的价值,实现业务流程创新、客户体验创新、产品服务创新、商业模式创新和社会责任的创新,使得企业能够以更高的灵活性和效率来应对市场变化,进而实现高质量可持续发展。生成式AI正在“听、说、读、写、看、画、思、动”等诸多方面延伸人的能力,行业用户已经开始加速部署。生成式AI正在沿着“智能实习生、个人数字助理、咨询顾问专家、优秀数字员工”方向演进,以钉钉代表的技术厂商推出AI Agent类应用是当前生成式AI落地的一条主流路径,成为多行业用

7、户优先尝试的落地方式。生成式AI正在重塑所有的行业和企业,其应用范围从跨行业应用场景如知识管理、市场营销、客户服务、代码生成、艺术设计等逐渐向行业专属的应用场景过渡,如金融行业的投资策略优化、政府行业的政策模拟与预测、制造行业的产品研发与设计、零售行业的虚拟试衣与产品展示、医疗行业的诊断辅助与医疗建议生成等。IDC调研显示,%的中国企业正在做大模型的初步测试和概念验证,%的中国企业已经在生成式AI方面投入了大量资金。为了在智能数字业务时代保持竞争力,企业必须开启一次重构之旅。从业务和组织层面,涉及到重新考虑和设计企业的产品服务、业务流程、管理结构及企业文化。从技术层面,需要考虑重构基础设施、业

8、务应用、交互模式、数据价值、生态伙伴。总之,这次重构不仅意味着引入新技术,还包括建立一种以数据和数字工具为核心的运营理念,以及培养一种创新和适应性强的企业文化,以帮助企业更好地利用智能技术,创新产品和服务,最终实现在智能数字业务时代的成功。AIGC应用层十大趋势从产业方向、应用形态、市场影响的维度给出了生成式AI应用层的十大趋势,让我们认识到年是生成式AI的真正落地年,生成式AI正在工具化,大模型也将向多模态、通用化和行业专属化发展。AI Agent作为大模型落地业务场景的主流形式,也将与业务流程无缝融合,有效提升企业生产力。AI原生应用的大幕也已开启,生成式AI将变得更加普惠。此白皮书适合企

9、业业务与技术管理者阅读,对普通业务与数字化技术人员也颇具参考价值。:数据来源:Future Enterprise Resiliency&Spending Survey Wave,IDC,Nov 武连峰 IDC中国副总裁兼首席分析师AIGC技术进步推动产业变革综述年,AIGC所代表的通用人工智能(AGI)技术引发全球范围内的持续激荡。AIGC在短时间里经历了三波进步浪潮:第一波是以GPT为代表的大模型涌现,形成了生成式人工智能(GenAI)发展的重要基础。第二波是应用层的快速创新,以生产力场景为最佳承载,使智能化从Chat向Work转化。第三波则是深度业务场景的应用,打通业务数字化全流程,服务实

10、体经济。预训练大模型的出现为当前AI领域的突破提供了新的通用化解决方案,让人们真正看到了AI技术大规模普惠落地的可能。大模型与广泛的业务场景有望实现深度集成,推动产业模式产生巨大变革。以大模型为基础的通用人工智能将作为一个元能力引擎,深度影响从劳动力市场到知识发展、内容创作、协同交互等商业、工作、生活的方方面面,让每个人都能够触达到“AI无处不在”的未来智能时代。在技术方面,大模型带来了认知智能技术跨越式发展。在应用方面,大模型可以为人类提供更加精准和高效的服务。在商业化方面,大模型将会带来软件入口级的颠覆,并显著促进上层生态的发展。IDC认为,大模型作为政府和企业推进人工智能产业发展的重要抓

11、手,已经具备较高的识别准确率和较强的场景迁移性,未来将会进入大模型应用跑马圈地的阶段。大模型将带动新的产业和服务应用范式,在类ChatGPT等应用的推动下,基于上层应用开发和SaaS服务的商业模式将会逐渐明晰,迎来人工智能的新业态。:AIGC全称为人工智能生成内容(AI-Generated Content),ChatGPT与AIGC均为大模型的应用场景之一。AIGC可以分为生成文本、生成图像、生成视频等应用场景,本白皮书的关注重点在于AIGC应用。IDC定义的AI应用均是基于机器学习算法。:生成式AI(Generative AI)是计算机科学的一个分支,涉及无监督和半监督算法,使计算机能够使用

12、之前创建的内容(如文本、音频、视频、图像和代码)来创建新内容,以响应简短的提示问题。:来源:IDC AI大模型技术能力评估报告()在日渐显著的预见性趋势下,企业IT支出向人工智能的倾斜和转移将是快速而巨量的,这几乎即将影响到未来的每一个行业和应用。IDC预计,到 年,全球 强(G)企业将把%以上的核心 IT 支出用于人工智能相关计划,从而使产品和流程创新的速度达到两位数的增长。从繁荣经济和商业的共识性目标出发,人工智能未来实现大规模落地的发力点必然聚焦在应用层创新。AIGC作为一条为用户、企业、社会带来切实价值的AI规模化落地路径,将在与企业/个人业务的深度融合过程中掀起一场应用的“AI革命”

13、,并带来从应用产品形态、开发模式到价值理念的一系列全新变化。:IDC全球人工智能系统支出指南(V,年):预计 年全球企业将在人工智能解决方案上投资 亿美元。到 年,这一支出将以.%的复合年增长率(CAGR)增长到 亿美元,这比同期全球 IT 支出.%的五年复合年增长率高出四倍多。IDC预测,年全球企业将在生成式人工智能(GenAI)解决方案上投资 亿美元,到 年,这一支出预计将超过 亿美元,年复合增长率超过%,大约是整个人工智能 IT 支出的 倍,几乎是全球同期 IT 支出年复合增长率的 倍。图 大模型价值实现路线图来源:IDC,关键举措核心技术实践案例人工智能政策战略及线路图人工智能架构企业

14、技术再培训运行 摄入 训练 调整 推理文本数据代码视频图像模型语音生成式基础模型行业应用实践业务功能实践生产力实践自动化全天候客户服务产业知识管理写作和社交媒体内容个性化营销活动销售计划书的制定生成式产品设计代码生成和测试个性化的员工入职和培训内部数字助理加速研究发现企业外部企业内部基础设施和平台信任与监督业务影响趋势一应用层创新成为 AIGC产业发展的确定方向产业方向围绕AIGC的应用层创新将成就一大批未来创新型企业。大模型所具备的强大通用智能,正在显现巨大的行业变革力,使AIGC在不同的应用领域体现出“力量倍增”效应。AIGC必然会通过应用创新过程融入到企业业务中,并构建出大量的新场景,A

15、IGC也会借助应用价值链的延伸,改变行业运行业态,对商业模式和利益格局产生深远影响。IDC就AIGC应用对诸多行业用户展开调研,所有受访企业均表示,或多或少都开始了对AIGC相关应用的投入与尝试。:IDC于年月就AIGC应用,面向制造、医疗、互联网、金融、零售个行业的共家年收入超过亿的大型企业展开调研,后文所提及调研成果,如无特别说明,均出自此项调研。应用创新是AIGC技术落地、链接用户价值的关键路径从历史上看,一项新技术能否获得成功的规模化实践,很大程度上取决于其在解决实际行业问题时的价值潜力,以及在改变行业发展态势的过程中能否构建出商业价值上的闭环。事实上,AIGC技术已经在政务、金融、企

16、业办公、文化创意、生产管理等多个领域中挖掘出强需求场景。在持续强化大模型通用智能能力的基础上,AIGC也产生了与更多实际场景深度融合的预期。对于一大批AI技术实践的创新型企业来说,找准落地场景是发挥AIGC实践价值的重要前提。大模型既可以通过日渐活跃的应用创新体系显现出巨大的业务价值,同时也能够显著提升应用软件自身的开发和部署效率,提升已部署应用的准确度。在可预见的一段时期内,随着大模型基础服务的日渐普及,行业用户将加速构建和部署定制化的 AI 应用,实现AIGC技术的多点开花。在即将到来的强人工智能时代,智能化应用将出现爆发式增长的态势。无处不在的应用开发有助于企业以业务场景为切入点快速满足

17、智能创新需求。IDC预测,到年,数字经济的发展将在全球范围内孕育出超过亿个新应用,相当于过去年间出现的应用数量的总和。图 企业现阶段对于AIGC的投入情况来源:IDC,尚未有相关投入,在未来两年内也没有此类投入计划正在做相关投入的路线规划,已有实行时间表我们的相关投入尚处于实施和落地的早期我们的相关投入已见成效,具体能力正在稳步发展我们的相关投入和能力发展在行业中接近或者处于领先位置.%.%.%B端应用场景逐渐清晰,办公和生产力成为落地先驱随着通用智能化能力的实践推广,AIGC会优先在B端用户中实现场景的落地,企业首先考虑的将会是与生产力和办公相关的场景。这其中的原因包括:商业因素:B端客户面

18、向AI新技术的付费意愿、流程成熟度、价值收益、市场就绪度等都更为理想。考虑到当前大模型的投入成本以及预期收费标准,IDC认为,AIGC能够为B端企业客户带来直观的降本增效成果,并有望以此为基础获得更多超预期的价值收益。但需要注意的是,由于行业发展基础不一,不同行业领域及不同业务场景间的预期差异可能较大,“找到技术与场景结合点”既是目标也是难点。与此相对应,面向C端用户推出的AIGC应用往往结合着对创新商业模式的探索以及对市场教育的投入,这会延长其构建商业闭环的时间周期。技术因素:AIGC擅长管理广泛的数据资产和知识沉淀,因此在一些先发场景中具备确定性的优势。IDC一项针对全球企业的GenAI调

19、研结果显示,知识管理场景是AIGC现在最受组织青睐的应用场景,在搜索、地图、数字人、智能对话、推荐以及业务流程优化等场景中也表现出巨大的潜力。这些场景的成功落地不仅提高了AI技术的影响力和受认可度,也促进了相关行业的发展。产业因素:AIGC的泛化能力为企业提供了更多的生产优化与创新路径选择。因此,新一波AI浪潮的红利,有望最先出现在与企业运行密切相关的显性业务中,以设计、开发、生产、运营和办公为代表的场景化应用最为典型。IDC预测,到年,%的企业将掌握使用GenAI来开发数字产品和服务的方法,从而实现比竞争对手高出一倍的收入增长。图 最有希望被企业采用的AIGC应用场景来源:IDC,%全球中国

20、美国营销应用场景 代码生成应用场景 会话的应用场景 知识管理应用场景 设计应用场景 没有,我认为这在我的公司不适用.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%.%趋势二大模型从“赶时髦”到“真有用”成为提效手段产业方向ChatGPT和AIGC在年开年引爆了AI圈,成为全社会追捧的热门话题。AIGC“天马行空”般的泛化能力起初被迅速娱乐化,在聊天、图文创作、艺术表达等领域被竞相试用和品评。随着大模型的快速迭代成熟,许多行业开始期望大模型能够解决现实业务问题,带来可持续的用户价值。IDC调研结果显示,当前企业就AIGC项目择选供应商合作时,最看重的是项目能否在短期内为企业带

21、来价值。在这样的目标指引下,越来越多的未来场景被描绘出来,大模型应用厂商们也在积极开拓行业用户,试图快速打造优质客户的行业领先实践。AIGC正在工具化,掌握优秀工具的员工将事半功倍 年,企业面对大模型可能带来的全新发展空间,将从“追赶新兴技术潮流”转变为对实践成果的深度关注,通过与业务、财务成果相一致的关键绩效指标(KPI)来衡量投资所带来的价值收益。AIGC的强大能力在产业需求引领下正在被快速地工具化,在客户服务、销售市场、知识管理以及辅助决策方面为企业带来效率的跨越式提升。AIGC对于行业竞争格局的重塑效应不容小觑。从个人视角看,掌握优秀工具的员工将事半功倍,普遍的文本创作、搜索、日常办公

22、以及应用开发等场景会在AIGC的影响下发生巨大变化,对不同环节工作效率的固有认知与评价标准也会有较为明显的改变。IDC的调研显示,企业当前最希望通过AIGC来实现的商业利益包括:改善客户体验/服务、提高开发人员生产力、实现差异化竞争优势以及创新商业模式等。IDC预测,到 年,GenAI将承担%图 企业选择AIGC项目时的重点考虑因素来源:IDC,更快地为企业带来价值生成内容和结果的准确性所在领域的经验积累帮助带来可衡量的商业价值供应商如何使用我们的数据更易合作(例如合同、付款协议等).%.%.%.%.%.%的传统营销琐事,如搜索引擎优化、内容和网站优化、客户数据分析与细分、潜在客户评分和超个性

23、化。借助PaaS手段提升大模型落地应用的准确性和稳定性AIGC的生成式技术特性,使其目前的应用过程仍存在一定的不确定性训练成本高,业务关联度低,输出内容时常不够稳定等,都成为企业在部署AIGC时的掣肘因素。IDC调研也表明,企业高层普遍担心AIGC带来的运营成本不可预测、隐私/合规风险以及客户预期管理等有关的不可控局面。此外,相关的技术栈、工具软件、数据集、技能方面的缺失都可能限制企业对AIGC的投入热情。因此,大模型的安全可解释以及产品工具的易用性都非常重要,是坚定企业信心、加快企业场景落地的关键问题。图 企业最希望通过AIGC应用实现的商业利益来源:IDC,改善客户体验/服务提高开发人员生

24、产力实现差异化竞争优势创新商业模式提高创收能力和订单速度改进绩效决策提高员工生产力.%.%.%.%.%.%.%想要达成行业AI应用的准确性、安全性目标,一方面要确保基础大模型的成熟稳定,另一方面也可以通过PaaS层对大模型的应用过程进行约束与管控。PaaS层“上通下达”至关重要:应用程序通过PaaS层接口调用基础大模型能力,灵活调整大模型的阈值;PaaS对上触达丰富场景,对下约束对应模型的输入和输出,最终帮助应用程序管控输出结果。PaaS层实现大模型能力的标准化封装:平台工具的易用性和经济性对于平台能力的大规模推广十分关键。技术厂商通过PaaS层对大模型能力进行产品化的封装,打造出简单易用的平

25、台工具,并进一步集成数据处理、预处理、特征工程等功能,加速AIGC的普及和推广。AI PaaS层保障生态开发质量:大模型的生态开发质量会对AI的行业应用前景产生长期影响。稳定安全的生态开发活动既可以将大模型推向行业纵深,也可以沉淀更多的业务数据和场景,以此来反哺AI能力的迭代过程。例如,钉钉推出了面向生态伙伴和企业的智能化底座AI PaaS,下接大模型能力,上接千行百业的用户真实需求,将智能化的门槛进一步降低,让大模型的能力进入工作场景,并稳定输出。基于AI PaaS,企业可以快速、低门槛地搭建起专属的智能化应用。图 企业最担心与AIGC应用相关的商业风险来源:IDC,IT运营成本(云和内部部

26、署)不可预测的增长潜在的监管/合规风险(如隐私、行业特定法规)管理客户的期望/疑惑(如偏见、幻觉等)对企业可持续发展承诺的影响公司数据被滥用或失去控制管理员工/合作伙伴的期望/疑虑组织关键技能不足.%.%.%.%.%.%.%趋势三专属、自建模型将在中大型企业涌现产业方向大模型的未来发展将趋向于通用化与专用化并行。通用预训练大模型在面对很多领域长期存在的痛点问题时,难以承担起更多专业化任务。企业对于大模型的要求不仅仅是实现“通识”,更需要其成为特定领域的“最强大脑”。因此,企业客户会产生越来越多的专属、自建模型需求,特别是一些中大型企业,通过对大模型的领域化适配,有望获得更加理想的综合收益。ID

27、C的调研显示:目前有%的企业使用大模型的公开版本,但这一比例在两年后会迅速降至%,更多企业会将AI应用建立在私有、专属模型基础上;同时,高达%的企业选择通过内部团队开发相关应用。由此可见,行业专属大模型已经成为企业未来的热点目标,企业也要持续建设自己的人才队伍,修炼AIGC应用的“内功”。为基础大模型注入特定参数,提升AIGC类应用在业务场景中的可用性。通用大模型依靠持续进化的感知、记忆、理解、分析与生成能力,解决普适性和无严格精确度要求的行业问题,专属大模型则通过行业知识的积累和有监督精调,向“专才”发展,为特定场景提供更精确、更具业务价值的服务。通用化与专用化并行,可以有效平衡大模型训练投

28、入的成本和边际效益。基础大模型突破AI通用能力的瓶颈,体现模型训练过程的集约化优势:基础大模型通过学习海量无标注数据并完成自监督学习的预训练,使大模型具备很强的泛化能力,减少下游任务的投入时间与成本。基础大模型训练可以被认为是一种集约化路径的体现,其显著减少了人力/资金占比较高的数据标注投入以及在训练阶段的算力资源投入。来源:IDC,图 企业测试/应用的AIGC模型类型现阶段 vs 未来两年图 企业测试/应用AIGC模型的工作团队 现阶段 vs 未来两年生成式AI模型的公开版本建立在公共数据上的生成式AI模型私有版本建立在我们自有数据基础上的生成式AI模型私有版本第三方生成式AI 应用程序内部

29、团队外部团队现阶段未来两年.%.%.%.%.%.%.%现阶段未来两年.%.%.%.%.%专属大模型沉淀厚重行业知识,向行业纵深需求挺进:AIGC在拓展其自身的可用性边界时,不同行业间的知识可迁移性往往不高,行业内的应用场景也较为分散,企业个体间差异难以统一衡量。专属大模型能够帮助生态开发企业和最终客户“站在巨人的肩膀上”,打造差异化竞争优势。通过技术厂商的开源或开放API/工具等进行大模型的调用,可以在小样本、零样本的学习下达到更精确的识别、理解、决策效果,以更低的成本赋能下游任务。基于特定任务和特定领域知识训练的专属或垂类模型,对于未来的B端客户来说是必不可少的。在打造专属AI能力的过程中,

30、中大型企业基于良好的资金基础和数据沉淀,有望率先构建起专属大模型服务,赋能行业生态和行业客户使用。专属大模型任务更加专注,造就企业数据的飞轮效应企业用户期望利用大模型更敏捷、更直观地感知业务运行状态,洞察关键问题。例如,企业用数场景非常普遍,但通常企业大多数员工都不精通专业的BI知识;在专属大模型的加持下,员工可以一句话实现业务数据的调取和问答,背后一系列内部系统数据的打通则最大限度地通过智能化手段自动完成。垂直领域的数据、面向场景的模型优化以及高效低成本的工程化解决方案是企业利用AI建立竞争优势的关键。未来,包括AIGC和大模型数据开发工作在内的一系列基础工作将变得更加自动化、智能化。IDC

31、预计,到 年,采用 GenAI 驱动的数据智能和集成软件将产生新的自动化数据平台,使数据工程师的生产力至少提高%。来源:IDC,图 基于基础模型生成企业解决方案路径开源/商业基础模型图像、文本、声音等可作为API/SDK使用特定领域的ISV解决方案基础模式/嵌入式人工智能用客户的私人数据集进行微调视使用情况而定分类器/过滤器以防止出现意外的负面后果改善上下文的准确性、成本和实现价值的时间提高了大模型的能源效率消除了更新模型的十亿/万亿权重或参数的需要维持足够的精度无进一步的训练提示调整企业解决方案专属大模型将加速企业数据价值的释能,数据从采集、汇聚,到治理、加工,再到形成知识后的智能问答交互过

32、程,都将变得更加快速高效。数据层面的利用率持续提升:根据IDC的DataSphere研究,每年企业产生的非结构化数据(内容)数量远远大于结构化数据,然而只有不到%的数据被用于分析、学习。专属大模型激发了企业使用非结构化数据的想象力。IDC预测,到年,数据的复杂性、波动性和资源稀缺性将增加,一半以上的中国强企业将使用人工智能和自动化技术来检测和自动处理数据。到 年,大模型、GenAI也将带动非结构化数据的用量翻倍。知识层面的输出更加专业:专属大模型具备更具行业背景的分析和交互能力。以智能问答场景为例,一些专业化公司对智能问答有很强的专业知识要求,并存在大量的专业名词。专属大模型通过对行业知识的沉

33、淀,辅以知识切片以及关键词、敏感词的设定等,使输出更加专业、有效。钉钉和艾为电子一起,打造出艾为专属模型,并基于这一模型搭建了“AI智能客服”。这个智能客服“学会”了艾为电子旗下大子类产品、近千款自主知识产权芯片的专业知识,成为艾为的产品“专家”,并且可以小时为数千家客户提供即时响应的咨询、答疑服务。与传统问答机器人相比,这个智能客服可以“理解”上下文对话,生成的回答也更为自然,且无需频繁地维护关键词和问答库,从而极大降低了成本。决策层面更加高效和精准:专属大模型也可以使数据转化为智慧的链路更聚焦、更高效。在ChatBI等应用的行业推广中,相关的行业业务能够带来更直观的行业数据和知识资产沉淀。

34、在整个过程中,行业知识积累越厚重,决策的精准度就越高,形成一个带有循环反馈机制的良性闭环。图 企业数据到决策的价值闭环打造了高价值生态系统,提供定制化、有价值且紧密相矣的体验可洞察公司客户群状态,清楚他们购买的原因及偏好将数据“意义化”指导公司即时了解现实状况可即时获取公司产品经营及运营数据数据的价值决策的准度智慧知识信息数据判断-决策理解-分析意义-可用解释模型决策制定数字优化产品数字产品增强服务高级分析智能和认知系统报告和分析销售数据集价值开发数据提炼价值实现来源:IDC,趋势四多模态大模型塑造“多边形战士”应用产业方向多模态大模型与语言大模型、视觉大模型均为当前大模型训练和开发的重要方向

35、。从GPT-V的“惊艳亮相”,到AI视频生成工具Pika.的“火爆出圈”,再到谷歌Gemini的“全面领先”,多模态 AI都是其中的关键词。多模态大模型更有利于提升智能化应用中的信息丰富度,其学习能力更强,分析和处理问题的视角更加全面。在一些典型AI应用中,多模态大模型显现出极强的可交互性,可帮助开发者与最终用户精准理解输入信息的上下文关联和隐含信息。在行业实践中,多模态大模型能通过对多维度信息的强力感知,持续强化推理能力,拓展服务边界,提升应用场景中的全面性和可靠性。使应用具备更高任务处理能力,深入跨领域、复杂场景从赋能应用的视角出发,多模态大模型能更充分地利用海量、异构的数据资源,提升应用

36、的效率和能力上限。例如,多模态大模型能够增加感知和分析的视角和维度,解决跨行业、跨领域的复杂问题和长尾场景。跨多个模态的数据融合问题已经成为行业应用的关注重点:在很多行业场景中,能够直接获得的数据模态通常都是多样化和难以统一的,多模态的感知和融合过程能够最大化体现数据资源的价值,解决很多行业中因为模态不匹配而无法完成的数据分析问题,提升大模型的效率和能力上限。图 多模态有助于大模型智能体系实现从感知到认知的升级赋能应用知识抽象知识抽取感知智能语言视觉多模态大模型认知智能生成推理部署来源:IDC,多模态相关的技术研究是未来AI获得进一步突破的关键:目前,多模态信息识别与理解技术、群体智能技术等,

37、已经成为研究开发的关键领域,有望加速人工智能从感知到认知的转化。多模态领域的成果还有助于协同解决其他单项技术领域(如NLP、CV)所面临的瓶颈,例如视觉领域的盲区、遮挡问题等。此外,更多的模态类型也正在或将要进入到大模型的融合能力中,例如自动驾驶激光点云、时空感知与测绘信息等。未来,包括政府、金融、制造、能源、医疗、零售等行业在内的大量智能化应用都将转变为多模态、跨模态的形式。图 行业场景对多模态的应用需求风险评估和信贷审查:通过分析文本和数值数据来预测客户的信用风险自动化客服:为用户提供即时的财务咨询和支持投资策略优化:分析大量数据,为投资者生成投资建议或预测市场走势欺诈检测:通过分析交易模

38、式和行为来识别可疑的交易报告自动生成:为管理层或监管机构自动生成财务和业务报告公共服务自动化:为公众提供信息查询、办事指南等服务政策模拟与预测:预测政策实施后的社会和经济影响数据分析和可视化:自动生成关于公共问题的报告和可视化内容舆情分析:分析公众对政府政策和行动的态度和反应智能监控和安全:通过分析视频和音频数据来提高公共场所的安全生产流程优化:分析工厂数据以优化生产效率产品设计辅助:基于市场和用户反馈生成新的产品设计建议供应链管理:预测供应链中的潜在问题或延迟设备维护预测:预测设备何时需要维护或更换质量控制自动化:通过分析图片和视频数据自动检测产品缺陷能源消费预测:预测末来的能源需求和消费模

39、式设备维护预测:预测能源设备何时需要维护或更换能源存储和分发优化:基于数据分析来优化能源的存储和分发可再生能源管理:预测和优化太阳能和风能的产出环境监测:通过分析视频、图片和传感器数据来监测环境和设备状况诊断辅助:分析医疗图像和患者数据以协助医生诊断药物研发:预测新药物的效果和副作用治疗建议生成:基于患者的历史和病情生成治疗建议患者监控和预警:实时分析患者的生理数据以预警其健康状况医疗文献自动生成和分析:自动生成或分析医学研究报告和文献库存管理和预测:预测产品的销售趋势和库存需求个性化推荐:基于用户的购买历史和喜好为其推荐产品客户服务自动化:为客户提供自动化的购物咨询和支持市场趋势预测:分析市

40、场数据以预测未来的零售趋势虚拟试衣和产品展示:使用AR和VR技术为用户提供虚拟的产品体验金融政府制造能源医疗零售模态:文本 图片 语音 视频 数值数据来源:IDC,多模态交互提升应用的可用性,带来更丰富的用户体验多模态大模型能够显著提升跨行业水平应用的能力和丰富度,解决更多协同场景下的AI应用难题,在用户体验方面创造出更多想像空间。艺术设计:多模态大模型提供的图生文、文生图、视频创作等能力已经日臻成熟,能够根据使用者的提示,综合考虑多项输入要求,快速输出创意成果。大模型的交互能力还可以根据使用者的反馈,不断修改设计输出,加速创意落地的过程。例如,钉钉个人版设置了灵感Store,目前已上架鹿班相

41、机(生成专业人像)、灵动人像(生成口播视频)等多媒体创作机器人,未来也将会引入更丰富的场景和多模态能力,接入更多的第三方AI服务。市场营销:用户端的语音、视频、图像,甚至更复杂的肢体语言、情感等信息,可以被广泛采集和连通,形成更为精准的营销目标创意,并最终通过多种自然交互方式,提升目标客户的沟通体验。客户服务:基于多模态能力的智能客服,能够突破单一语音或文字方式的局限性,实现多维度的综合分析,对客户的意图进行更加精准的识别和洞察,同时可以综合采用多种方式回答客户问题,全力提升客户满意度。总而言之,多模态大模型可以帮助用户构建出一个更加丰富、友好的界面,使应用与人的交互过程无限趋近于人类自身的习

42、惯。此外,多模态大模型如果与VR/AR、元宇宙等技术体系进一步融合,还可以打造更深层、更多维、更丰满的全新体验。趋势五AI Agent是大模型落地业务场景的主流形式应用形态AI Agent通常被视为一种融合感知、分析、决策和执行能力的智能体,具备相当显著的主动性,堪称人类的理想智能助手。例如,AI Agent可以根据个人在线互动和参与事务处置时的信息,了解和记忆个体的兴趣、偏好、日常习惯,识别个体的意图,主动提出建议,并协调多个应用程序去完成任务。在满足企业智能化需求的过程中,AI Agent作为一种理想的产品化落地形态,正在承接日益复杂的提质增效需求;同时,其通过强化内外部协同效能,可以释放

43、组织核心生产力,对抗组织熵增带来的挑战。IDC的调研表明:所有企业都认为AI Agent是AIGC发展的确定性方向;同时,%的企业已经在某项工作中进行了AI Agent的试点,另有%的企业正在制定AI Agent的应用计划。AI Agent让“人机协同”成为新常态,个人与企业步入AI 助理时代AI Agent能够帮助未来企业构建以“人机协同”为核心的智能化运营新常态。越来越多的业务活动都将被委托给AI,而人类则只需要聚焦于企业愿景、战略和关键路径的决策上。人与大量AI实体之间的协同工作模式,将颠覆当前企业的运行基础,让企业运营成效获得成倍提升。AI Agent在满足企业日常运营的流程性需求方面

44、潜力巨大,在工作、生活、学习、娱乐、健康等多方面都可以提供丰富、多样且极具个性化的体验,例如在工作场景提供日程提醒、差旅安排、会议室预定、文字助理、会议速记、知识问答、数据分析辅助决策等智能功能;在生活场景中提供餐饮娱乐订购、日程安排、健康管理、旅行规划等助理服务。AI Agent可以根据用户以往的工作过程信息,分析用户偏好,模仿用户风格,不断贴近用户的工作习惯。邮件和文本自动撰写:可以自动生成电子邮件回复或撰写报告草稿。它可以根据以往的交流方式和内容,模仿用户的写作风格,节省大量撰写时间。来源:IDC,图 企业AI Agent的应用情况实现了AI Agent常态化,AI Agent已经参与到

45、企业招聘、销售、人事等各项业务流程中AI Agent已经成熟运用于某一具体业务流程已经在某项工作中进行了AI Agent试点正在制定AI Agent应用计划不了解或尚未考虑.%.%.%.%智能搜索和信息收集:进行高效的信息搜索和整理。无论是网上的资料还是个人的文档库,它都能帮助用户快速找到所需信息,并整理成易于理解的格式。应用搭建:根据自然语言输入完成应用的自主搭建,使没有编程经验的业务人员也能完成简单的应用功能开发。生活助理和娱乐:根据用户的兴趣和娱乐偏好推荐电影、音乐、书籍等,甚至可以创造个性化的故事或音乐,提供更加丰富的娱乐体验。伴随着AI的能力发展,AI助理将持续创造新的办公模式,包括

46、在内/外部工作环境中建立新的协同处置方法,在数据智能分析中引入动态交互式的BI功能,以及在重要稿件的编辑过程中实现内容的自动化初创和审核等。在以AI Agent为代表的AIGC应用加持下,越来越多的创新将会源自于超级个体和小型组织。在一些领域里,一个人加上足够的AI工具,就可以成为一家专业化公司。人与AI将产生高效的分工与协作:AI汇集和处理海量需求信息,人只需要在一些关键的节点做出决策和处置动作,即可完成企业价值创造的全过程。AI Agent变革未来生产力的组织形式,对抗组织熵增在AGI的时代,企业组织结构和社会生产关系在大模型的全局优化效应下,必然会朝着整体效率最高的方向发展。企业业务多样

47、性的持续提升会使组织的复杂性不断增加。AIGC进一步增强了AI Agent的功能和实用性,给组织形态的变革和组织协同的优化带来了新的希望。通过增加数字员工,AIGC能够极大程度地缓解前端工作压力,积累业务知识和沉淀资产,提升企业整体运营效率。数字员工将丰富的领域知识与多模态交互方式相结合,不仅可以强化分析、判断和决策能力,还能与企业的员工、数字化系统、基础设施等进行广泛连接,成为企业的有机组成部分。AI将不仅仅作为辅助工具,而是真正成为独立的生产要素,全面解放现有劳动力并实现生产力组织形式的新变革。钉钉与一号直聘合作实现了HR领域的数字员工应用,融合AIGC技术自动化完成招聘、人才管理流程中的

48、一系列任务。一号直聘不再独立建设APP,而是创新性地将后台的业务流程分解为不同的插件,完全融入到钉钉的能力体系当中,让所有环节符合钉钉用户的使用习惯,也使钉钉AIGC实现了细粒度的融入,解决供需不匹配、信息不流通、缺少信任机制、高需低频、流程拥塞等长期痛点问题,是AIGC生态融入的典型范例。后续,钉钉与生态伙伴还将在财务、法务、运营等方向进行持续探索。未来,企业工作任务将在AIGC的助推作用下变得日益原子化和碎片化,复杂的流程将被无限拆解,再进行灵活的编排和组合,每个环节的效能和潜力都将被AI持续挖掘。而从供给端看,“人+AI数字员工”的高效协同模式将为大型企业对抗组织熵增提供理想的解法。趋势

49、六AIGC加速超级入口的形成应用形态AIGC将给应用软件的形态和业态带来颠覆性变化。基于自然语言的极简交互将替代很多传统的图形界面交互,形成LUI+GUI的混合形态。同时,“no app”的理念也将重塑下一代应用,通过对话即可直接调取、使用各种工具,让更多的非软件专业人员也能获取到强大的系统服务。由此,超级入口将成为新一代应用软件的典型前端形态。AIGC带来的应用形态变革,也有利于激发当前的软件产业活力,促进软件生态繁荣,推动应用与垂类业务实现更深的融合。IDC的调研显示:绝大多数软件企业都认可超级入口将成为未来的主流应用形态。基于自然语言的极简交互,“no app”理念将重塑应用形态新一代应

50、用将会被对话式交互模式(LUI)重新塑造。所有的SaaS公司都将全面拥抱AI,软件公司最终会变成智能系统运行商,软件操作方式被大幅简化,应用之间的集成度更高,多应用之间也更加融合。AIGC重塑应用形态的过程将重点体现在两个方面:一是对既有软件进行智能化改造与升级,以API的形式增加重要环节的可交互性和认知能力;二是对软件的应用架构和模式进行全新重构。“No APP”的理念将会体现在大量的未来应用中:no app的应用体感:业务流程和个人交互方式的改变对用户体验影响巨大,LUI有效理解和分析用户意图,并根据相关指引进行目标分解,快速调取超级应用承载的海量复杂功能,形成组合式输出。来源:IDC,图

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 研究报告 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服