收藏 分销(赏)

第五讲圆幂定理和内接四边形.doc

上传人:w****g 文档编号:1504763 上传时间:2024-04-29 格式:DOC 页数:7 大小:885.51KB
下载 相关 举报
第五讲圆幂定理和内接四边形.doc_第1页
第1页 / 共7页
第五讲圆幂定理和内接四边形.doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述
第五讲圆幂定理和内接四边形 第五讲:与圆有关的比例线段+圆内接四边形 [知识点] 注意:(1)相交弦定理、切割线定理及其推论统称为圆幂定理,圆幂定理是圆和相似三角形结合的产物。这几个定理可统一记忆成一个定理:过圆内或圆外一点作圆的两条割线,则这两条割线被圆截出的两弦被定点分(内分或外分)成两线段长的积相等(至于切线可看作是两条交点重合的割线)。使用时注意每条线段的两个端点一个是公共点,另一个是与圆的交点; (2)见圆中有两条相交想到相交弦定理;见到切线与一条割线相交则想到切割线定理;若有两条切线相交则想到切线长定理,并熟悉此时图形中存在着一个以交点和圆心连线为对称轴的对称图形 【例题分析】 例1:如图所示,圆O是△ABC的外接圆,∠BAC与∠ABC的平分线相交于点I,延长AI交圆O于点D,连接BD、DC. (1)求证:BD=DC=DI; (2)若圆O的半径为10cm,∠BAC=120°,求△BDC的面积. 例2:如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交AABC的外接圆于点F,连接FB、FC. (1)求证:FB=FC; (2)求证:FB2=FA•FD; (3)若AB是△ABC外接圆的直径,∠EAC=120°,BC=6cm,求AD的长. 例3:如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C, 连接BC,AF. (1)求证:直线PA为⊙O的切线; (2)试探究线段EF、OD、OP之间的等量关系,并加以证明; (3)若BC=6,tan∠F=1\2,求cos∠ACB的值和线段PE的长. 例6:在Rt△ABC中,BC=9, CA=12,∠ABC的平分线BD交AC与点D, DE⊥DB交AB于 点E,为⊙O的半径. ⑴设⊙O是△BDE的外接圆,求证: ⑵ 求⊙O的半径的长. ⑶设⊙O交BC于点F,连结EF,求的值. 例7:(2014•泸州24题)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA. (1)求证:BC=CD; (2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长. 例8:如图,已知AB是⊙O的直径,直线l与⊙O相切于点C且,弦CD交AB于E,BF⊥l,垂足为F,BF交⊙O于G. (1)求证:CE2=FG•FB;(2)若tan∠CBF=,AE=3,求⊙O的直径. 例9:如图,已知AB是⊙O的直径,直线l与⊙O相切于点C已知:在ABC中,AD为∠BAC的平分线,以C为圆心,CD为半径的半圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,FE:FD=4:3. (1)求证:AF=DF; (2)求∠AED的余弦值; (3)如果BD=10,求△ABC的面积. 1.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于(  ) 2.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为(  ) 3.如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是(  ) 4.如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是( ) 【课后作业】 已知:在菱形中,是对角线上的一动点. (1)如图甲,为线段上一点,连接并延长交于点,当是的中点时,求证:; (2)如图乙,连结并延长,与交于点,与的延长线交于点.若,求和的长. B卷(共50分) 一、填空题:(每小题4分,共20分) 21.设,是一元二次方程的两个实数根,则的值为__________________. 22.如图,在中,,,,动点从点开始沿边向以的速度移动(不与点重合),动点从点 开始沿边向以的速度移动(不与点 重合).如果、分别从、同时出发,那么 经过_____________秒,四边形的面积最小 23.有背面完全相同,正面上分别标有两个连续自然数(其中)的卡片20张.小李将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,则该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为)不小于14的概率为_________________. 24.已知是正整数,是反比例函数图象上的一列点,其中.记,,若(是非零常数),则的值是________________________(用含和的代数式表示). 25.如图,内接于,,是上与点关于圆心成中心对称的点,是边上一点,连结. 已知,,是线段上一动点,连结 并延长交四边形的一边于点,且满足, 则的值为_______________. 二、(共8分) 26.随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点.据某市交通部门统计,2007年底全市汽车拥有量为180万辆,而截止到2009年底,全市的汽车拥有量已达216万辆. (1)求2007年底至2009年底该市汽车拥有量的年平均增长率; (2)为保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2011年底全市汽车拥有量不超过231.96万辆;另据估计,从2010年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.假定每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆. 三、(共10分) 27.已知:如图,内接于,为直径,弦于,是的中点,连结并延长交的延长线于点,连结,分别交、于点、. (1)求证:是的外心; (2)若,求的长; (3)求证:. 四、(共12分) 28.在平面直角坐标系中,抛物线与轴交于两点(点在点的左侧),与轴交于点,点的坐标为,若将经过两点的直线沿轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线. (1)求直线及抛物线的函数表达式; (2)如果P是线段上一点,设、的面积分别为、,且,求点P的坐标; (3)设的半径为l,圆心在抛物线上运动,则在运动过程中是否存在与坐标轴相切的情况?若存在,求出圆心的坐标;若不存在,请说明理由.并探究:若设⊙Q的半径为,圆心在抛物线上运动,则当取何值时,⊙Q与两坐轴同时相切? 7 / 7
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服