收藏 分销(赏)

苏科版九年级圆综合练习.doc

上传人:精*** 文档编号:1457996 上传时间:2024-04-27 格式:DOC 页数:11 大小:301KB
下载 相关 举报
苏科版九年级圆综合练习.doc_第1页
第1页 / 共11页
苏科版九年级圆综合练习.doc_第2页
第2页 / 共11页
点击查看更多>>
资源描述
圆综合练习 一.选择题(共17小题) 1.如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC的大小是(  ) A.70° B.40° C.50° D.20° 2.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为(  ) A. B. C.4 D.2+ 3.如图,点O是⊙O的圆心,点A、B、C在⊙O上,AO∥BC,∠AOB=38°,则∠OAC的度数是(  ) A.52° B.38° C.22° D.19° 4.如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的(  ) A.三条高线的交点 B.三条中线的交点 C.三个角的角平分线的交点 D.三条边的垂直平分线的交点 5.如图,A,B,C是⊙O上的三点,且∠ABC=70°,则∠AOC的度数是(  ) A.35° B.140° C.70° D.70°或140° 6.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于(  ) A.80° B.50° C.40° D.20° 7.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为(  ) A.2 B.4 C.4 D.8 8.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为(  ) A.2 B.8 C.2 D.2 9.如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是(  ) A.35° B.55° C.65° D.70° 10.有下列四个命题: ①直径是弦; ②经过三个点一定可以作圆; ③三角形的外心到三角形各顶点的距离都相等; ④半径相等的两个半圆是等弧. 其中正确的有(  ) A.4个 B.3个 C.2个 D.1个 11.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是(  ) A.80° B.80°或100° C.100° D.160°或20° 12.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是(  ) A. ﹣ B.﹣ C.π﹣ D.π﹣ 13.一个圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为(  ) A.cm B.cm C.3cm D.cm 14.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于(  ) A.20° B.30° C.40° D.50° 15.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为(  ) A. B. C. D. 16.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为(  ) A.40° B.45° C.50° D.55° 17.如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是(  ) A.3 B.2 C.1 D.0   二.填空题(共3小题) 18.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为   . 19.如图,在Rt△AOB中,OA=OB=3,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为   . 20.如图,直角坐标系中一条圆弧经过网格点A,B,C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为   .   三.解答题(共20小题) 21.如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D. (1)求证:AC是⊙O的切线; (2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π) 22.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图). (1)求证:AC=BD; (2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长. 23.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB. (1)若CD=16,BE=4,求⊙O的直径; (2)若∠M=∠D,求∠D的度数. 24.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E. (1)求证:CD为⊙O的切线; (2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π) 25.如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC,BC相切于点D,E. (1)当AC=2时,求⊙O的半径; (2)设AC=x,⊙O的半径为y,求y与x的函数关系式. 26.如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE. (1)求证:∠B=∠D; (2)若AB=4,BC﹣AC=2,求CE的长. 27.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC. (1)求证:PA是⊙O的切线; (2)若PD=,求⊙O的直径. 28.已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D. (Ⅰ)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小; (Ⅱ)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小. 29.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D点,连接CD. (1)求证:∠A=∠BCD; (2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由. 30.如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=. (1)求⊙O的半径OD; (2)求证:AE是⊙O的切线; (3)求图中两部分阴影面积的和. 31.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1. (1)求∠C的大小; (2)求阴影部分的面积. 32.如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF. (1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π) (2)求证:OD=OE; (3)求证:PF是⊙O的切线. 33.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA. (1)当直线CD与半圆O相切时(如图①),求∠ODC的度数; (2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC, ①AE与OD的大小有什么关系?为什么? ②求∠ODC的度数. 34.如图,AB是⊙O的直径,C是的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH. (1)求证:AC=CD; (2)若OB=2,求BH的长. 35.如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD. (1)判断直线CD和⊙O的位置关系,并说明理由. (2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长. 36.如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M为⊙O上一点,并且∠BMC=60°. (1)求证:AB是⊙O的切线; (2)若E,F分别是边AB,AC上的两个动点,且∠EDF=120°,⊙O的半径为2,试问BE+CF的值是否为定值?若是,求出这个定值;若不是,请说明理由. 37.如图,在△ABC中,AC=BC,AB是⊙C的切线,切点为D,直线AC交⊙C于点E、F,且CF=AC. (1)求∠ACB的度数; (2)若AC=8,求△ABF的面积. 38.如图,已知直线l与⊙O相离.OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C. (1)求证:AB=AC; (2)若PC=2,求⊙O的半径及线段PB的长. 39.如图,△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP. (1)求证:PC是⊙O的切线; (2)若∠PAC=60°,直径AC=4,求图中阴影部分的面积. 40.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D. (1)求证:BC是⊙O切线; (2)若BD=5,DC=3,求AC的长.  
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服