1、 1 3.1 从算式到方程从算式到方程(第一课时)主备:吴刚 审核:邹永红 吴青云【教学目标】知识与技能 1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步。2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念。3、培养学生获取信息,分析问题,处理问题的能力。【教学重点】列出方程,了解方程的概念;培养学生获取信息,分析问题,处理问题的能力。【教学难点】从实际问题中寻找相等关系【教学设计】一、情景引入:教师提出教科书第 79 页的问题,同时出现下图:问题 1:从上图中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)教师可以在学生回答的
2、基础上做回顾小结 问题 2:你会用算术方法求出王家庄到翠湖的距离吗(当学生列出不同算式时,应让他们说明每个式子的含义)教师可以在学生回答的基础上做回顾小结:1、问题涉及的三个基本物理量及其关系;2、从知的信息中可以求出汽车的速度;3、从路程的角度可以列出不同的算式:50 7015 1070 23015 13 50 7013 1050 23015 13 问题 3:能否用方程的知识来解决这个问题呢?二、学习新知:1、教师引导学生设未知数,并用含未知数的字母表示有关的数量 如果设王家庄到翠湖的路程为 x 千米,那么王家庄距青山 千米,王家庄距秀水 千米 2、教师引导学生寻找相等关系,列出方程 问题
3、1:题目中的“汽车匀速行驶”是什么意思?问题 2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?问题 3:根据车速相等,你能列出方程吗?2 教师根据学生的回答情况进行分析,如:依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:507035xx ,依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程:5050 7032x 3、给出方程的概念方程的概念,介绍等式、等式的左边、等式的右边等概念 含有未知数的等式叫方程含有未知数的等式叫方程.4 4、归纳列方程解决实际问题的两个步骤:、归纳列方程解决实际问题的两个步骤:(1)用字母表示问题中的未知数
4、(通常用 x,y,z 等字母);(2)根据问题中的相等关系,列出方程 三、举一反三、讨论交流:1、比较列算式和列方程两种方法的特点建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报 列算式:只用已知数,表示计算程序,依据是问题中的数量关系;列方程:可用未知数,表示相等关系,依据是问题中的等量关系。2、思考:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?、建议按以下的顺序进行:(1)学生独立思考;(2)小组合作交流;(3)全班交流 如果直接设元,还可列方程:70605x 如果设王家庄到青山的路程为
5、 x 千米,那么可以列方程:12060;335xxx 依据各路段的车速相等,也可以先求出汽车到达翠湖的时刻:552126,再列出方程536x=60 说明:要求出王家庄到翠湖的路程,只要解出方程中的 x 即可,我们在以后几节课中再来学习 四、初步应用、课堂练习:1、例题 P/80 2、练习(补充):(1)列式表示:比 a 小 9 的数;x 的 2 倍与 3 的和;5 与 y 的差的一半;a 与 b 的 7 倍的和 (2)根据下列条件,列出关于 x 的方程:(1)12 与 x 的差等于 x 的 2 倍;(2)x 的三分之一与 5 的和等于 6.3 五、课堂小结:可以采用师生问答的方式或先让学归纳,
6、补充,主要围绕以下问题:1、本节课我们学了什么知识?2、你有什么收获?(说明方程解决许多实际问题的工具。)六、作业设计:1、根据下列条件,用式表示问题的结果:(1)一打铅笔有 12 支,m 打铅笔有多少支?(2)某班有 a 名学生,要求平均每人展出 4 枚邮票,实际展出的邮标量比要求数多了 15 枚,问该班共展出多少枚邮票?2、根据下列条件列出方程:小青家 3 月份收入 a 元,生活费花去了三分之一,还剩 2400元,求三月份的收入。3、P/84。1、P/85.5.3.1 从算式到方程从算式到方程(第二课时)主备:吴刚 审核:邹永红 吴青云【教学目标】知识与技能 1、理解一元一次方程、方程的解
7、等概念;2、掌握检验某个值是不是方程的解的方法。【教学重点】寻找相等关系、列出方程 【教学难点】对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力【教学设计】一、情境引入:问题:小雨、小思的年龄和是 25.小雨年龄的 2 倍比小思的年龄大 8 岁,小雨、小思的年龄各是几岁?如果设小雨的年龄为 x 岁,你能用不同的方法表示小思的年龄吗?二、建立概念:1.一元一次方程:让学生在观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的指数都是 1,这样的方程叫做一元一次方程“一元”:一个未知数;“一次”:未知数的指数是一次 4 判断下列方程是不是一元
8、一次方程:(1)23-x=一 7:(2)2a-b=3 (3)y+36y-9;(4)0.32 m-(30.02 m)=0.7 (5)x21 (6)11423yy 引导学生归纳:从上面的分析过程我们可以发现,用方程的方法来解决实际问题,一般要经历哪几个步骤?在学生回答的基础上,教师用方框表示:分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法 2.一元一次方程的解:能使方程左右两边的值相等的未知数的值,叫做方程的解求方程的解的过程,叫做能使方程左右两边的值相等的未知数的值,叫做方程的解求方程的解的过程,叫做解方程解方程 一般地,要检验某个值是不是方程的解,可以用这
9、个值代替未知数代人方程,看方程左右两边的值是否相等 四、课堂练习:1、P81 思考 2、P82 1、2、3(2)课堂小结:本节课主要学习了一元一次方程的概念和根据实际问题列方程.(3)作业设计:1.已知(m2-1)x2-(m+1)x+8=0 是关于 x 的一元一次方程,求 200(m+x)(x-2m)+m 的值 2.关于 x 的方程(2-a)x|a-1|-21=3 是一元一次方程,求 a 的值.3.P/85 6、7、8 实际问题 一元一次方程 设未知数 列方程 5 等式的性质()等式的性质()第一课时【教学目标】知识与技能 1、了解等式的两条性质;2、会用等式的性质解简单的(用等式的一条性质)
10、一元一次方程;3、培养学生观察、分析、概括及逻辑思维能力;过程与方法 通过对列方程思路的归纳,渗透“化归”的思想 情感、态度与价值观 感受数学与生活的联系,认识数学来源于生活,又服务于生活。【教学重点】理解和应用等式的性质【教学难点】应用等式的性质解一元一次方程【教学设计】一、提出问题:用估算的方法我们可以求出简单的一元一次方程的解你能用这种方法求出下列方程的解吗?(1)3x-522;(2)0.28-0.13y=0.27y1.第(1)题要求学生给出解答,第(2)题较复杂,估算比较困难,此时提出:我们必须学习解一元一次方程的其他方法 二、探究新知:6 等式就像平衡的天平,它具有与上面的事实同样的
11、性质比如“8=8”,我们在两边都加上 6,就有“86=86”;两边都减去 11,就有“811=811”.等式两边加上的可以是同一个数,也可以是同一个式子 等式一般可以用 a=b 来表示等式的性质 1 怎样用式子的形式来表示?然后让学生用两种语言表示等式的性质 2.问题:你能再举几个运用等式性质的例子吗?三、运用等式的性质来解方程:例 1 教科书第页例 2 中的第(1)、(2)题 分析:所谓“解方程”,就是要求出方程的解“x=?因此我们需要把方程转化为“x=a(a为常数)”形式。例 1:怎样才能把方程 x7=26 转化为 x=a 的形式?学生回答,教师板书:解:(1)两边减 7,得、x+77=2
12、67,x=19.问题 2:式子“5x”表示什么?我们把其中的5 叫做这个式子的系数你能运用等式的性质把方程5x=20 转化为 x=a 的形式吗?用同样的方法给出方程的解 例 2(补充)小涵的妈妈从商店买回一条裤子,小涵问妈妈:“这条裤子需要多少钱?”妈妈说:“按标价的八折是 36 元”你知道标价是多少元吗?解:设标价是 x 元,则售价就是 80 x 元,根据售价是 36 元 可列方程:80%x=36,两边同除以 80,得 x=45.答:这条裤子的标价是 45 元 四、小结:让学生进行小结,主要从以下几个方面去归纳:等式的性质有那几条?用字母怎样表示?字母代表什么?解方程的依据是什么?最终必须化
13、为什么形式?如果 a=b,那么 ac=bc 字母 a、b、c 可以表示具体的数,也可以表示一个式子。如果 a=b,那么 ac=bc 如果 a=b(c0),那么abcc 7 在字母与数字的乘积中,数字因数又叫做这个式子的系数 五、课堂练习:练习 (1)、(2)六、作业设计:(1)利用等式的性质解下列方程:a25=95 x12=4 0.3x=12 233x(2)P/84 2、3、4(1)9.一件电器,按标价的七五折出售是 213 元,问这件电器的标价是多少元?()P85 10()已知等式(a+2)c=a+2 得 c=1 不成立,求 a2+2a+1 的值.()已知 2x2-3=7,那么 x2+1=_
14、()X=-2 时,ax3+bx+6 的值为,求 x=-2 时,求 ax3+bx-12 的值()已知 3b-2a-1=3a-2b,利用等式的性质比较 a、b 大小.()已知 8x+9y-1=8y+9x,利用等式的性质比较 x、y 的大小 七、教案设计意图:本节课从提出间题,引起学生的认知冲突引出学习的必要性在每个环节的安排 中,突出了问题的设计,教师通过一个个的问题,把学生的思维激发起来,从而使学生主动、有效地参与到学习中来 重视学生多元智能的开发对教科书上的两幅图采取了两种不同的处理方法 既有直观的实验演示,又有学生的图形观察;既要求学生从实验中归纳结论,又要求学生理解图形用实验验证对发现的结
15、论用自己的语言、文字语言、字母表达式表示出来让 学生充分地进行实验、观察、归纳、表达、应用 突出对等式性质的理解和应用实验演示、观察图形、语言叙述、字母表示、初步应用等都是为了使学生能理解性质,在解方程的过程中,要求学生说明每一步变形的依据,解题后及时地进行小练所有这些都围绕本节课的重点,也为后续的学习打下基础 等式的性质()等式的性质()第二课时【教学目标】知识与技能 进一步理解用等式的性质解简简单的(两次运用等式的性质)一元一次方程;过程与方法 初步具有解方程中的化归意识;8 情感、态度与价值观 培养言必有据的思维能力和良好的思维品质【教学重点】用等式的性质解方程。【教学难点】需要两次运用
16、等式的性质,并且有一定的思维顺序。【教学设计】一、复习引入:解下列方程:(1)x7=1.2;(2)2332x 在学生解答后的讲评中围绕两个问题:每一步的依据分别是什么?求方程的解就是把方程化成什么形式?(x=a)这节课继续学习用等式的性质解一元一次方程。二、探究新知:对于简单的方程,我们通过观察就能选择用等式的哪一条性质来解,下列方程你也能马上做出选择吗?教材例 2(3)利用等式的性质解方程。(两次运用等式的性质)例 1 利用等式的性质解方程:0.5x=3.4 要把方程 0.5x=3.4 转化为 x=a 的形式,必须去掉方程左边的 0.5,怎么去?解:两边减 0.5,得 0.5x0.5=3.4
17、0.5 化简,得 x=29,、两边同乘1,得 l x=2.9 小结:(1)这个方程的解答中两次运用了等式的性质(2)解方程的目标是把方程最终化为 x=a 的形式,在运用性质进行变形时,始终要朝着这个目标去转化 例 2(补充)服装厂用 355 米布做成人服装和儿童服装,成人服装每套平均用布 35米,儿童服装每套平均用布 15 米现已做了 80 套成人服装,用余下的布还可以做几套儿童服装?在学生弄清题意后,教师再作分析:如果设余下的布可以做 x 套儿童服装,那么这 x套服装就需要布 1.5x 米,根据题意,你能列出方程吗?解:设余下的布可以做 x 套儿童服装,那么这 x 套服装就需要布 1.5 米
18、,根据题意,得 80 x3.51.5x355 化简,得 2801.5x355,两边减 280,得 2801.5x280355280,化简,得 1.5x75,两边同除以 1.5,得 x50 答:用余下的布还可以做 50 套儿童服装 9 解后反思:对于许多实际间题,我们可以通过设未知数,列方程,解方程,以求出问题的解也就是把实际问题转化为数学问题 问题:我们如何才能判别求出的答案 50 是否正确?在学生代入验算后,教师引导学生归纳出方法:检验一个数值是不是某个方程的解,可以把这个数值代入方程,看方程左右两边是否相等,例如:把 x=50 代入方程 803.51.5x=355 的左边,得 803.51
19、.550=28075=355 方程的左右两边相等,所以 x=50 是方程的解。你能检验一下 x=27 是不是方程15 43x 的解吗?三、课堂小结:先让学生进行归纳、补充。主要围绕以下几个方面:(1)这节课学习的内容。(2)我有哪些收获?(3)我应该注意什么问题?教师对学生的学习情况进行评价。四、作业设计:(2)(3)(4)、10、11 五、教案设计意图:1、力求体现新课程理念:数学教学活动必须建立在学生的认知发展水平和已有的知 识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者本设计从新课的引人、例题的处理
20、(包括解题后的反思)、反馈练习及小结提高等各环节都力求充分体现这一点 2、在传统的课堂教学中,教师往往通过大量地讲解,把学生变成任教师“灌输”的“容 器”,学生只能接受、输入并存储知识,而教师进行的也只不过是机械地复制文化知识新 课程的一个重要方面就是要改变学生的学习方式,将被动的、接受式的学习方式,转变为动手实践、自主探索与合作交流等方式本设计在这方面也有较好的体现 3、为突出重点,分散难点,使学生能有较多机会接触列方程,本章把对实际问题的讨论作为贯穿于全章前后的一条主线对一元一次方程解法的讨论始终是结合解决实际问题进行的,即先列出方程,然后讨论如何解方程,这是本章的又一特点本设计充分体现了
21、这一特点 10 3.23.2 解一元一次方程(一)解一元一次方程(一)合并同类项与移项合并同类项与移项 第一课时第一课时 【课标目标】知识与技能 1、经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型 2、学会合并(同类项),会解“axbx=c”类型的一元一次方程 过程与方法 能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程 情感态度与价值观 初步体会一元一次方程的应用价值,感受数学文化。【教学重点】:重点:建立方程解决实际问题,会解“axbx=c”类型的一元一次方程。难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程。【教学设计】一、情景引入:
22、活动 1:(出示背景资料)约公元 825 年,中亚细亚数学家阿尔一花拉子米写了一本代数书,重点论述怎样解方程这本书的拉丁文译本取名为对消与还原“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题 二、探求新知:活动 2:出示教科书 76 页问题 1:某校三年共购买计算机 140 台,去年购买数量是前年的 2 倍,今年购买的数量又是去年的 2 倍。前年这个学校购买了多少台计算机?引导学生回忆:设问 1:如何列方程?分哪些步骤?师生讨论分析:设未知数:前年购买计算机 x 台 找相等关系:11 前年购买量去年购买量今年购买量=140 台 列方程:x2x4x=140
23、设问 2:怎样解这个方程?如何将这个方程转化为 x=a 的形式?学生观察、思考:根据分配律,可以把含 x 的项合并,即 x2x4x=(124)x=7x 老师板演解方程过程:(略)为帮助有困难的学生理解,可以在上述过程中标上箭头和框图。设问 3:以上解方程“合并”起了什么作用?每一步的根据是什么?学生讨论、回答,师生共同整理:“合并”是一种恒等变形,它使方程变得简单,更接近 x=a 的形式。三、练习巩固:1、教师出示教材例 1 师生共同解决,教师板书过程。2、课堂练习:P/89 练习 四、课堂小结 提问:1、你今天学习的解方程有哪些步骤,每一步依据是什么?2、今天讨论的问题中的相等关系有何共同特
24、点?学生思考后回答、整理:解方程的步骤及依据分别是:合并和系数化为 1 总量=各部分量的和 五、课堂作业:P/92 1,4,5 六、设计意图:1、本节引子与上一节的“阅读与思考”相呼应,同时提出下面几节要讨论的内容,起到承上启下的作用,又有助于增加学习数学的兴趣,扩大知识面,感受数学的历史和文化的陶冶,提高数学紊养 2、以学生身边的实际问题展开讨论,突出数学与现实的联系 3、以学生身边的实际问题展开讨论,突出数学与现实的联系 4、以问题的形出现,引导学生思考、交流,梳理所学知识。训练学生的口头表达能力,养成及时归纳总结的良好学习习惯。12 3.23.2 解一元一次方程(一)解一元一次方程(一)
25、合并同类项与移项合并同类项与移项 第二课时第二课时 【课标目标】知识与技能 能熟练地求解数字系数的一元一次方程(不含去括号、去分母)。过程方法目标 经历和体会解一元一次方程中“转化”的思想方法。情感态度目标 在数学活动中获得成功的喜悦,增强自信心和意志力,激发学习兴趣。【教学重点】重点:学会解一元一次方程 难点:移项【教学设计】一、创设情景,引入新课 问题 1、上节课我们学习了较简形式的一元一次方程的求解,哪位同学能够说一下解方程的基本思想?13 问题 2、到目前为止,我们用到的对方程的变形有哪些?目的有哪些?二、实践探索,揭示新知 1、P/89 问题 2 把一些图书分给某班学生阅读,如果每人
26、分 3 本,则剩余 20 本;如果每人分 4 本,则还缺 25 本。这个班有多少学生?(1)设未知数:这个班有 x 名学生(2)找相等关系:这批书的总数是一个定值,表示它的两个式子下相等。(3)列方程:3x+20=4x-25(4)怎么样解这个方程?怎么样才能使它向 x=a 转化?它的依据是什么?2、下面请大家解方程:62 10 x 看谁算得又快又准!解:方程的两边同时加上 2 得 62 2 10 2x 即612x 两边同除以 6 得 2x 师:把原来求解的书写格式写成:62 10 x 610 2x 大家看一下有什么规律可寻?可以讨论一下 给出了移项的概念:根据等式的基本性质方程中的某些项改变符
27、号后,可以从方程的一边移到另一边,这样的变形叫做移项。3、出示教材例题 2 教师引导学生按板书的框图展示的过程共同完成本题。4、下面我们用移项的方法来解方程:62 10 x,103 9x 看谁做得又快又准确!千万不要忘记移项要变号。在前面的解方程中,移项后的“化简”只用到了常数项的合并,试看看下面的方程:53 47xx 11342xx 观察并思考:移项有什么特点?移项后的化简包括哪些内容 师巡视学生做的情况(很多学生在移项的过程中将含x的项和常数项弄错)含未知数的项通常放在等号的左边,将含未知数的项合并;常数项通常放在等号的右边,将常数项合并,最终化成形如“x a”的形式。14 移项的实质是什
28、么?本质上就是利用等式的性质。三、尝试应用,反馈矫正(P/91 练习)2 个学生上黑板板演(教师巡视学生做得情况,有的同学老是忘记移项要变号)四、归纳小结 通过本节课的学习你的收获是什么?五、作业:P/93 2、3、6.教学反思:教学反思:方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的。本节课是先从利用等式的性质来解方程,从而引出了移项的概念。然后让学生利用移项的方法来解方程(只合并常数项),来感受方法的简洁性。进一步给出了练一练的两个方程,让学生动手去做。学生在做的过程中出现了很多困惑:含未知数的项不知道如何处理;移项没有变号;没移动的项也改变了符号;针对以上情况,先让有困
29、难的学生说一下自己的困惑,让其他同学帮助他解决困惑,这样更能促进同学间的相互进步。(由于时间的关系,本节课这一点做得不好。)再让学生总结注意点,教师注意点拨。最后的学生小结并不是一种形式,通过小结教师能很好地看出学生的知识形成和掌握情况,另外也可以看出他的情感态度。以往的教学方法强调的是教师的主导作用,从短期效果来看效果不错,但却忽视了思维的发展过程。学生归纳概念实际上并不是一个容易的过程,由于思维的差异,大部分学生的归纳一般都很不足,但却反映了知识是不断形成和完善的过程,这时教师要耐心加以适当地引导。数学新课标明确地指出:“有效地数学学习活动不能单纯地依靠模仿与记忆,动手实践自主探索与合作交
30、流是学生学习数学的重要方式。”前苏联著名教育家斯托利亚尔在他所著的数学教育学一书中也指出:“数学教学是数学活动的教学(思维活动的教学)。”新的教学观所关注的不是活动的结果而是活动的过程。教师要关注学生在学习过程表现出来的情感态度,使学生始终保持良好的精神状态。注重构建平等、民主的师生关系,营造和谐、宽松的课堂气氛。师生能在平等的对话中进行活动,使学生在愉悦的氛围中进行思考,获取知识 3.23.2 解一元一次方程(一)解一元一次方程(一)合并同类项与移项合并同类项与移项 第三课时 15【课标目标】知识与技能 1、学会探索数列中的规律,建立等量关系。2、能正确的求解一元一次方程。过程与方法 经历运
31、用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力。情感、态度与价值观 培养学生乐于思考,不怕困难的精神。【教学重点】重点:1、找相等关系列一元一次方程.2、用合并、移项解一元一次方程.难点:找相等关系列方程,正确用合并解一元一次方程.【教学设计】一、创设情景,引入新课 活动 1 解下列方程:1、3x+5=4x+1 2、9-3y=5y+5 学生独立完成,同学交流。从中发现学生的优点和不足并加以纠正。二、实践探索,揭示新知 活动 2 展示问题 1 有一列数,按一定规律排列成 1,-3,9,-27,81,-243,其中某个相邻数的和是-1701,这三个数个是多少?由问题 1 入手解决问
32、题方法。1、观察这些数,考虑它们前后之间的关系,从符号和绝对值两方面观察发现规律 2、如果和其中一个数为 a,那么它后面与它相邻的数是_.活动 3 1、思考:谁能根据题中给定的条件找到它们的等量关系?x-3x+9x=-1701 2、谁能解这个方程:x-3x+9x=-1701 合并 7x=-1701 系数化为 1 16 x=-243 三、尝试应用,反馈矫正 活动 4练习(1)5x-2y-7=8 (2)05321yy 四、归纳小结 活动 4 1、列方程关键问题是什么?2、如何用含有字母的式子表示数量关系?五、作业:解下列方程 1、(1)233121xx (2)253231xx(3)35.0123x
33、x (4)03316.0 xx 2、P/94 7,8,9 六、设计意图:1、使学生的思维得到训练,并通过问题的提出和解决提高学生的数学思维能力以及分析问题和解决问题的能力。2、发挥学生的主动性,让学生们来思考并完成解方程的过程。17 3.23.2 解一元一次方程(一)解一元一次方程(一)合并同类项与移项合并同类项与移项 第四课时【课标目标】知识与技能 1、进一步培养学生列方程解应用题的能力;2、通过探索实际问题与一元一次方程的关系,感受数学的应用价值,提高分析问题,解决问题的能力。过程与方法 经历实际问题抽象为方程模型的过程,进一步体会模型化的思想。情感、态度与价值观 培养学生热爱生活,用于探
34、索的精神。【教学重点】重点:建立一元一次方程解决实际问题。难点:探索实际问题与一元一次方程的关系。【教学设计】一、创设情景,引入新课 信息社会,人们沟通交流方式多样化,移动电话已很普及,选择经济实惠的收费方式很有理实意义。观察下列两种移动电话计费方式表:方式一 方式二 月租费 30 元/月 0 本地通话费 0.30 元/分 0.40 元/分 设计以下问题:1、你能从中表中获得哪些信息,试用自己的话说说。2、一个月内在本地通话 200 分和 350 分,按两种计费方式各需交费多少元?3、对于某个本地通通话时间,会出现两种计费方式的收费一样的情况吗?18 二、实践探索,揭示新知 解:1、用方式一每
35、月收月租费 30 元,此外根据累计通话时间按 0.30 元/分加收通话费;用方式二不收月租费,根据累计通话时间按 0.40 元/分收通话费。1.4,设 累计通话 t 分,则用方式一 要收费(30+0.3t)元,用 方式二要收费 0.4t 元,如 果两种计费方式的收费一样,则 0.4t=30+0.3t 移项得 0.4t0.3t=30 合并,得 0.1t=30 系数化为 1,得 t=300 2.3、不一定,具体由当月累计通话时间决定。三、综合应用:1.一个周末,王老师等 3 名教师带着若干名学生外出考察旅游(旅费统一支付),联系了标价相同的两家旅游公司,经洽谈,甲公司给出的优惠条件是:教师全部付费
36、,学生按七五折付费;乙公司给的优惠条件是:全部师生按八折付费,请你参谋参谋,选择哪家公司较省钱?2.光华农机公司共有 50 台联合收割机,其中甲型 20 台,乙型 30 台,现将 50 台联合收割机派往 A、B 两地收割小麦,其中 30 台派往 A 地,20 台派往 B 地.两地与农机公司商定的每天的租金如下表:每台甲型收割机的租金 每台乙型收割机的租金 A 地 1800 元 1600 元 B 地 1600 元 1200 元 (1)设派往 A 地 x 台乙型联合收割机,农机公司这台收割机一天获得的租金为 y 元,请用的代数式表示,写出 x 的取值范围.(2)若使这台收割机一天获得的租金总额不低
37、于 79600 元,使说明有多少种分配方案.(3)如果要使这 50 台收割机每天获得的租金最高,请你为光华农机公司提出一条合理建议.四、小结 小结归纳:谈谈你对用一元一次方程解决问题的认识。五、作业 P、/94 10,11.六、设计意图:课程改革的目的之一是促进学习方式的转变,加强学习的主动性和探究性,本章内容涉及大量的实际问题,丰富多彩的问题情境和解决实际问题的快乐更容易激起学生对数学 方式一 方式二 200 分 90 元 80 元 350 分 135 元 140 元 19 的兴趣,在本节中,引导学生从身边的移动电话收费,旅游费用等问题展开探究,使学生在现实、富有挑战性的问题情境中经历多角度
38、认识问题,多种策略思考问题,尝试解释答案的合性的活动,培养探索精神和创新意识 3.3 解一元一次方程(二)解一元一次方程(二)去括号与去分母去括号与去分母 第一课时【课标目标】知识与技能(1)掌握去括号法则.(2)熟练掌握解一元一次方程的一般步骤.过程方法目标 通过丰富的实例,建立一元一次方程,运用方程解决丰富多彩,贴近生活的实际问题,在活动中培养解决问题的兴趣和能力,提高思维水平和应用数学知识解决实际问题的意识.情感态度目标 本节知识的学习充分体现了方程思想和化归思想,同时,引导学生认识到数学知识的 20 产生是由于实际生活的需求,反过来又服务于生活,体现了方程是刻画现实世界的有效模型.【教
39、学重点】重点:通过“去括号”解一元一次方程.难点:探究通过“去括号”的方程解一元一次方程.【教学设计】一、创设情景,引入新课 活动 1 问题(1)某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少 2000 度,全年用电 15 万度,这个工厂去年每月平均用电多少度?能不能用方程解决这个问题?教师口述,学生思考并回答问题。教师对学生的回答进行总结:设上半年每月平均用电 X 度,则下半年每月平均用电(X-2000)度,上半年共用电 6X 度,下半年共用电 6(X-2000)度 由题意列方程 6x+6(x-2000)=150000 二、实践探索,揭示新知 1、问题(2)能尝试解这个方程吗?
40、学生独立完成解方程 教师巡视,观察学生的解题方法,并请学生表述解法及解法依据。(1)去括号(2)移项(3)合并同类项(4)系数化为 1 本次活动中,教师应重点关注:(1)学生能否体会到“去括号”的必要性(2)学生是否能明确“去括号”的可行性(3)学生能否总结出“去括号”的步骤(4)学生能否正确表达自己的想法,能否倾听、思考、理解他人的想法 2、活动 2 问题(1)解方程 3x-7(x-1)=3-2(x+3)应该怎样求解?学生观察方程的特点,回答问题 教师提出问题并对学生的回答进行总结:先去括号 问题(2)怎样去括号 在独立思考的基础上,学生分组交流,总结去括号的正确方法。教师深入小组参与活动,
41、指导、倾听学生的交流。归纳去括号的方法:括号前面的数分别乘以括号里的数,然后再把积相加。3.例题讲解:例 1、解方程:3x-7(x-1)=3-2(x+3)21 本例师生共同完成,教师要给学生一个完整规范的示例,告诉学生完整规范的过程可以避免许多不必要的错误。4、练习 P/97 1,2 P/102 4 三、课堂小结 谈一谈你对形如 6x+6(x-2000)=150000 的方程的解法的认识。说一说你分析列方程解应用题的思路。四、作业 P/102 1,2,5 五、设计意图 本课时主要是讲授去括号法则,以及解一元一次方程的程序。教师在讲授新课是都可以通过一些具体的实例来引入课题,再逐步的把知识灌给学
42、生。本课时是通过用电问题列出一元一次方程,通过要求方程的解来把去括号法则这知识传授给学生。在掌握了具体知识的基础上再通过讲授例题加深对知识的巩固。本节内容是去括号解一元一次方程,方程是代数学的核心内容,从学生生活的常见游戏和生活中的实例入手,引起学生的学习兴趣,激发学生钻研问题的能力,进而进入知识的学习,从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础。22 3.3 解一元一次方程(二)解一元一次方程(二)去括号与去分母去括号与去分母 第二课时【课标目标】知识与技能 1、熟练掌握解一元一次方程中“去括号”的方法,并能解此类型的方程。2、进一步学习列方程解应用题,
43、培养学舍那个分析解决问题的能力。过程与方法 1、通过去括号解方程,体会化归德数学思想方法。2、经历“把实际问题抽象为方程,发展用方程方法分析解决问题的能力。情感、态度与价值观 体验数学来源于生活,又服务于生活,激发学生的学习兴趣。【教学重点】重点:将实际问题抽象为方程,列方程解应用题。难点:将实际问题抽象为方程的过程中,寻找问题中的等量关系。【教学设计】一、创设情景,引入新课 去括号是解方程时常用的变形,分别将下面的方程去括号:(1)方程 3x+5(13-x)=54,去括号得_;(2)方程 3x-5(13-x)=54,去括号得_.二、探究新知:问题 1:一艘船从甲码头到乙码头顺流行驶,用了 2
44、 小时;从乙码头返回甲码头逆流行驶,用了 2.5 小时已知水流的速度是 3 千米小时,求船在静水中的平均速度 教师提示学生思考一下几个问题:1、行程问题中的基本关系式是什么?2、船在流水中航行,它的速度都和哪些量有关,这些量之间的关系式怎么样的?3、本题中友哪些等量关系?问题 2:某车间 22 名工人生产螺钉和螺母,每人每天平均生产螺钉 1 200 个或螺母 2 000个,一个螺钉要配两个螺母为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?解决问题的关键:1、如果设 x 名工人生产螺钉,则 名工人生产螺母;2、为了伸每天的产品刚好配套应使生产的螺母恰好是螺钉数量的 三
45、、课堂练习 1、某水利工地派 48 人去挖土和运土,如果每人每天平均挖土 5 方或运土 3 方,那么应怎样安排人员,正好能使挖出的土及时运走?2、用白铁皮做罐头盒,每张铁片可制盒身 16 个或制盒底 43 个一个盒身与两个盒底配 23 成一套罐头盒现有 100 张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分地利用白铁皮?四、小结:通过以下问题引导学生反思小结:1、通过这节课的学习,你有什么收获?2、在解决配套、分配等问题方面你获得了哪些经验?这些问题中的相等关系有什么特点?五、作业 P/102 6,7,10,11,12 六、设计意图:为了体现新课程的理念,本节课
46、从生活实践人手,对“配套”间题进行自主探索与研究,这与现实生活尤其是市场经济是十分吻合而且具有实际意义的 24 3.3 解一元一次方程(二)解一元一次方程(二)去括号与去分母去括号与去分母 第三课时【课标目标】知识与技能 会把实际问题建成数学模型,会用去分母的方法解一元一次方程。过称与方法 通过列方程解决实际问题,让学生逐步建立方程的思想;通过去分母解方程,让学生了解数学中的化归思想。情感、态度与价值观 让学生了解数学的渊源和辉煌的历史,激发数学学习的热情。【教学重点】重点:会用去分母的方法解一元一次方程。难点:实际问题中如何建立等量关系,并根据等量关系列出方程。【教学设计】一、创设情景,引入
47、新课 通过创设古埃及问题情境,列方程解决该问题,发展学生用方程解决问题的能力,感受方程是刻画客观世界量于量之间关系的主要模型之一,激发学生的学习热情,关注对学生 文化素养的培养。教师投影展示关于纸莎草文书的简单介绍,然后出示教材的问题。分析:如果设这个数为 X,你能列出方程吗?学生思考后回答:33712132xxxx 25 二、探究新知:1、你能接这个方程吗?可以两边都乘以 42,去掉分母,使计算过程得到简化。思考:为什么要乘以 42 呢?两边同时乘以所有分母的最小公分母。2、教师出示教材例 4(本例教师要写完整规范的过程)三、练习巩固,综合运用 练习:教材练习(1)(2)四、小结与作业:小结
48、:谈谈你对一元一次方程解法的认识。作业:P/102 3,8 五、设计意图:任何未知的探求都希望通过已知来解决,这是数学中化归思想的核心。问题的出现必须寻找以往的经验进行解决,通过学生的观察与不叫,尝试与探究,可以知道如何去分母成为主题。使学生能较好的掌握解方程的一般方法步骤,进而能融会贯通,灵活运用数学手段解决数学问题。3.3 解一元一次方程(二)解一元一次方程(二)去括号与去分母去括号与去分母 第四课时【课标目标】知识与技能 1、会根据实际问题中数量关系列方程解决问题,熟练掌握一元一次方程的解法 2、培养学生数学建模能力,分析问题、解决问题的能力 过称与方法 通过列方程解决实际问题,让学生逐
49、步建立方程的思想;通过去分母解方程,让学生了解数学中的化归思想。情感、态度与价值观 通过开放问题的设计,培养学生创新能力和挑战自我的意识,增强学生的学习兴趣。【教学重点】重点:会用去分母的方法解一元一次方程。难点:实际问题中如何建立等量关系,并根据等量关系列出方程。【教学设计】一、讨论交流:26 按怎样的步骤解方程322137263xxx才最简便?由此你能得到怎样的启发?二、探索研究:1.整理一批图书,由一个人做要 40 小时完成现在计划由一部分人先做 4 小时,再增加两人和他们一起做 8 小时,完成这项工作假设这些人的工作效率相同,具体应安排多少人工作?解决问题的关键:(1)把总工作量看作
50、1;(2)工作量=人均效率人数时间 2、试一试:课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人已知师傅单独完成需 4 天,徒弟单独完成需 6 天,”就因校长叫他听一个电话而离开教室 调皮的小刘说:“让我试一试”上去添了“两人合作需几天完成?有同学反对:“这太简单了!”但也引起了大家的兴趣,于是各自试了起来 请同学们尝试着尽可能多地补全此题,并与同学们一起交流各自的做法 3、举一反三:(1)为庆祝校运会开幕,七年级(1)班学生接受了制作校旗的任务原计划一半同学参加制作,每天制作 40 面而实际上,在完成了三分之一以后,全班同学一起参加,结果比原计划提前一