收藏 分销(赏)

高等数学上泰勒公式-PPT.ppt

上传人:1587****927 文档编号:1368077 上传时间:2024-04-24 格式:PPT 页数:28 大小:1.70MB
下载 相关 举报
高等数学上泰勒公式-PPT.ppt_第1页
第1页 / 共28页
高等数学上泰勒公式-PPT.ppt_第2页
第2页 / 共28页
高等数学上泰勒公式-PPT.ppt_第3页
第3页 / 共28页
高等数学上泰勒公式-PPT.ppt_第4页
第4页 / 共28页
高等数学上泰勒公式-PPT.ppt_第5页
第5页 / 共28页
点击查看更多>>
资源描述

1、1二、几个初等函数的麦克劳林公式二、几个初等函数的麦克劳林公式 一、泰勒公式的建立一、泰勒公式的建立三、泰勒公式的应用三、泰勒公式的应用 应用应用用多项式近似表示函数用多项式近似表示函数理论分析理论分析近似计算近似计算5.3 泰勒泰勒 (Taylor)公式公式 2特点特点:一、泰勒公式的建立一、泰勒公式的建立以直代曲以直代曲在微分应用中已知近似公式在微分应用中已知近似公式:需要解决的问题需要解决的问题如何提高精度如何提高精度?如何估计误差如何估计误差?x 的一次多项式的一次多项式31.求求 n 次近似多项式次近似多项式要求要求:故故令令则则42.余项估计余项估计令令(称为余项称为余项),则有则

2、有56公式公式 称为称为 的的 n 阶泰勒公式阶泰勒公式.公式公式 称为称为n 阶泰勒公式的拉格朗日余项阶泰勒公式的拉格朗日余项.泰勒中值定理泰勒中值定理:阶的导数阶的导数,时时,有有其中其中则当则当7公式公式 称为称为n 阶泰勒公式的佩亚诺阶泰勒公式的佩亚诺(Peano)余项余项.在不需要余项的精确表达式时在不需要余项的精确表达式时,泰勒公式可写为泰勒公式可写为注意到注意到*可以证明可以证明:式成立式成立8特例特例:(1)当当 n=0 时时,泰勒公式变为泰勒公式变为(2)当当 n=1 时时,泰勒公式变为泰勒公式变为给出拉格朗日中值定理给出拉格朗日中值定理可见可见误差误差9称为麦克劳林(称为麦

3、克劳林(Maclaurin)公式)公式.则有则有在泰勒公式中若取在泰勒公式中若取则有误差估计式则有误差估计式若在公式成立的区间上若在公式成立的区间上由此得近似公式由此得近似公式10二、几个初等函数的麦克劳林公式二、几个初等函数的麦克劳林公式其中其中11其中其中12类似可得类似可得其中其中13其中其中14已知已知其中其中类似可得类似可得15三、泰勒公式的应用三、泰勒公式的应用1.在近似计算中的应用在近似计算中的应用 误差误差M 为为在包含在包含 0,x 的某区间上的上界的某区间上的上界.需解问题的类型需解问题的类型:1)已知已知 x 和误差限和误差限,要求确定项数要求确定项数 n;2)已知项数已

4、知项数 n 和和 x,计算近似值并估计误差计算近似值并估计误差;3)已知项数已知项数 n 和误差限和误差限,确定公式中确定公式中 x 的适用范围的适用范围.16已知已知例例1.计算无理数计算无理数 e 的近似值的近似值,使误差不超过使误差不超过解解:令令 x=1,得得由于由于欲使欲使由计算可知当由计算可知当 n=9 时上式成立时上式成立,因此因此的麦克劳林公式为的麦克劳林公式为17说明说明:注意舍入误差对计算结果的影响注意舍入误差对计算结果的影响.本例本例若每项四舍五入到小数点后若每项四舍五入到小数点后 6 位位,则则 各项舍入误差之和不超过各项舍入误差之和不超过总误差为总误差为这时得到的近似

5、值不能保证误差不超过这时得到的近似值不能保证误差不超过因此计算时中间结果应比精度要求多取一位因此计算时中间结果应比精度要求多取一位 .18例例2.用近似公式用近似公式计算计算 cos x 的近似值的近似值,使其精确到使其精确到 0.005,试确定试确定 x 的适用范围的适用范围.解解:近似公式的误差近似公式的误差令令解得解得即当即当时时,由给定的近似公式计算的结果由给定的近似公式计算的结果能准确到能准确到 0.005.192.利用泰勒公式求极限利用泰勒公式求极限例例3.求求解解:由于由于用洛必塔法则用洛必塔法则不方便不方便!用泰勒公式将分子展到用泰勒公式将分子展到项项,203.利用泰勒公式证明

6、不等式利用泰勒公式证明不等式例例4.证明证明证证:21内容小结内容小结1.泰勒公式泰勒公式其中余项其中余项当当时为麦克劳林公式时为麦克劳林公式.222.常用函数的麦克劳林公式常用函数的麦克劳林公式3.泰勒公式的应用泰勒公式的应用(1)近似计算近似计算(3)其他应用其他应用求极限求极限,证明不等式证明不等式 等等.(2)利用多项式逼近函数利用多项式逼近函数,25思考与练习思考与练习 计算计算解解:原式原式26由题设对由题设对证证:备用题备用题 1.有有且且27下式减上式下式减上式,得得令令28两边同乘两边同乘 n!=整数整数+假设假设 e 为有理数为有理数(p,q 为正整数为正整数),则当则当 时时,等式左边为整数等式左边为整数;矛盾矛盾!2.证明证明 e 为无理数为无理数.证证:时时,当当故故 e 为无理数为无理数.等式右边不可能为整数等式右边不可能为整数.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 大学课件

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服