1、1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理 三角形两边的和大于第三边16 推论 三角形两边的差小于第三边17 三角形内角和定理 三角形三个内角的和等于 180
2、18 推论 1 直角三角形的两个锐角互余19 推论 2 三角形的一个外角等于和它不相邻的两个内角的和20 推论 3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS)有三边对应相等的两个三角形全等26 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27 定理 1 在角的平分线上的点到这个角的两边的距离相等28 定理
3、2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理 等腰三角形的两个底角相等(即等边对等角)31 推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论 3 等边三角形的各角都相等,并且每一个角都等于 6034 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论 1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于 60的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于 3
4、0那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理 1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理 直角三
5、角形两直角边 a、b 的平方和、等于斜边 c 的平方,即 a2+b2=c247 勾股定理的逆定理 如果三角形的三边长 a、b、c 有关系 a2+b2=c2,那么这个三角形是直角三角形48 定理 四边形的内角和等于 36049 四边形的外角和等于 36050 多边形内角和定理 n 边形的内角的和等于(n-2)18051 推论 任意多边的外角和等于 36052 平行四边形性质定理 1 平行四边形的对角相等54 推论 夹在两条平行线间的平行线段相等55 平行四边形性质定理 3 平行四边形的对角线互相平分56 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理 2 两
6、组对边分别相等的四边形是平行四边形58 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形60 矩形性质定理 1 矩形的四个角都是直角61 矩形性质定理 2 矩形的对角线相等62 矩形判定定理 1 有三个角是直角的四边形是矩形63 矩形判定定理 2 对角线相等的平行四边形是矩形64 菱形性质定理 1 菱形的四条边都相等65 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即 S=(ab)267 菱形判定定理 1 四边都相等的四边形是菱形68 菱形判定定理 2 对角线互
7、相垂直的平行四边形是菱形69 正方形性质定理 1 正方形的四个角都是直角,四条边都相等70 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理 1 关于中心对称的两个图形是全等的72 定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 等腰梯形性质定理 等腰梯形在同一底上的两个角相等75 等腰梯形的两条对角线相等76 等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形77 对角线相等的梯形是等腰梯形78 平行线等分线
8、段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论 2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)2 S=Lh83(1)比例的基本性质 如果 a:b=c:d,那么 ad=bc;如果 ad=bc,那么 a:b=c:d84(2)合比性质 如果 ab=cd,那么(ab)b=(cd)d85(3)等比性质 如果 ab=cd=mn(b+d+n0)
9、,那么(a+c+m)(b+d+n)=ab86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理 1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两
10、个直角三角形和原三角形相似93 判定定理 2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理 3 三边对应成比例,两三角形相似(SSS)95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理 2 相似三角形周长的比等于相似比98 性质定理 3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值
11、等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理 不在同一直线上的三个点确定一条直线110 垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧111 推论
12、1 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧弦的垂直平分线经过圆心,并且平分弦所对的两条弧平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112 推论 2 圆的两条平行弦所夹的弧相等113 圆是以圆心为对称中心的中心对称图形114 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116 定理 一条弧所对的圆周角等于它所对的圆心角的一半117 推论 1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧
13、也相等118 推论 2 半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径119 推论 3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120 定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121直线 L 和O 相交 dr直线 L 和O 相切 d=r直线 L 和O 相离 dr122 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线123 切线的性质定理 圆的切线垂直于经过切点的半径124 推论 1 经过圆心且垂直于切线的直线必经过切点125 推论 2 经过切点且垂直于切线的直线必经过圆心126 切线长定理 从圆外一点引圆的两条切线
14、,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127 圆的外切四边形的两组对边的和相等128 弦切角定理 弦切角等于它所夹的弧对的圆周角129 推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130 相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等131 推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133 推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134 如果两个圆相切,那么切点一定在连心线上135两圆外
15、离 dR+r 两圆外切 d=R+r两圆相交 R-rdR+r(Rr)两圆内切 d=R-r(Rr)两圆内含 dR-r(Rr)136 定理 相交两圆的连心线垂直平分两圆的公共弦137 定理 把圆分成 n(n3):依次连结各分点所得的多边形是这个圆的内接正 n 边形经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正 n 边形138 定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139 正 n 边形的每个内角都等于(n-2)180/n140 定理 正 n 边形的半径和边心距把正 n 边形分成 2n 个全等的直角三角形141 正 n 边形的面积 Sn=pnrn/2 p 表
16、示正 n 边形的周长142 正三角形面积3a/4 a 表示边长143 如果在一个顶点周围有 k 个正 n 边形的角,由于这些角的和应为 360,因此 k(n-2)180/n=360化为(n-2)(k-2)=4144 弧长计算公式:L=nR/180145 扇形面积公式:S 扇形=nR/360=LR/2146 内公切线长=d-(R-r)外公切线长=d-(R+r)图形认识初步1(1)几何图形:我们把从实物中抽象出的各种图形称为几何图形。立体图形:有些几何图形(如长方形,正方体,圆柱,圆锥,球等)的各部分都不在同一平面内,它们是立体图形。平面图形:有些几何图形(如线段,角,三角形,长方形,圆等)的各部
17、分都在同一平面内,它们是平面图形(2)从不同方向看物体 从正面看,可以分清物体的长度和高度从左面看,可以分清物体的高度和宽度从上面看,可以分清物体的长度和宽度2体、面、线,点 体:几何体也简称体 面:包围着体的是面 线:面和面相交的地方是线 点:线和线相交的地方是点 点动成线,线动成面,面动成体注:(1)一般柱体都可以由底面的平面图形沿棱平移得到 (2)一般来说,有曲面的几何体,都可以由某一平面图形绕某一直线旋转得到3 直线,射线,线段(1)直线的基本性质(直线公理)经过两点有一条直线,并且只要一条直线,简称为 2 点确定一条直线(2)表示方法 用一个小写字母表示,如直线 l,线段 a 用大写
18、字母表示如,线段 AB,射线 OA(3)点与直线的位置关系点在直线上_*_ A 点直线外_ P(4)两直线相交 两条直线相交有一个公共点,即交点注意公理和定理的区分(1)命题的定义:判断一件事情的语句叫做命题(2)组成:命题是由题设和结论组成的,题设是已知,结论是由已知推出的事项 命题可以写成“如果那么”的形式 经过推论证实的真命题叫定理 3线段的性质(1)线段的画法 尺规法:用圆规在射线 AC 上截取 AB=a度量法:先量出线段 a 的长度,在画出一条等于这个长度的线段(2)线段的比较 叠合法:即把其中的一条线段移到另一条线段上作比较度量法:即用刻度尺分别测量出它们的长度作比较(3)线段的中
19、点一个点把其中一条线段分成两条相等的线段,这个点就叫做这条线段的中点,类似的还有线段的 3 等分点等(4)线段公理两点连线的所有线段中,线段最短(5)线段距离:连接两点间线段的长度,叫做两点间的距离4 角 定义:有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,两条射线是角的两条边 注:角的大小和边长没有关系角可以看做由一条射线绕着它的端点旋转而成的图形,当终止位置和起始位置成一条直线时所成的角叫做平角,等终止位置和起始位置重合是所形成的的角叫做周角(2)角的表示法用 3 个大写字母表示,表示顶点的字母必须写中间当顶角处只有一个角时,可以用表示顶角的一个大写字母表示用数字或希腊字
20、母表示(3)角的分类 锐角:大于 0,小于 90的角 直角:等于 90的角钝角:大于 90,小于 180的角平角:等于 180的角周角:等于 360的角(4)角的度量和换算 我们常用量角器量角,度,分秒是常用的角度单位,把一个周角 360 等分,每一份就是 1 度的角,记作:1;同样的还有,把一度的角 60 等分,记作:1:把 1 分的角 60 等分,记作 1(2)换算方法 由度化为分秒的形式:1=60,1=60 由分秒化为度的形式:1=)601(1,601)(画角的工具:三角板,量角器(5)角的比较和运算比较:可以用量角器量出度数再比较和差:两种意义,几何意义和代数意义(6)角平分线从一个角
21、的顶点出发,把这个角分成相等的两个角的射线6 余角和补角 余角如果两个角的和等于 90 度,就说明这两个角互为余角简称互余,其中一个角是另一的角的余角补角如果两个角的和等于 180,就说这两个角互为补角,简称互补,其中一个角是另一个角的补角性质等角(或同角)的余角补角相等7 方位角方位角通常以正南或正北方向为基准,描述物体运动的方向,通常先写正北或正南,在写偏东或偏西 相交线与平行线1两条相交线所形成的角 邻补角:有一条公共边,它们的一条边互为反向延长线,邻补角互补 对顶角:有一个公共点,它们的两边都互为反向延长线,具有这种关系的两个角互为对顶角,对顶角相等(1)邻补角和对顶角都是成对出现的(
22、2)对顶角相等:但相等不一定是对顶角(3)两条直线相交,形成两组对顶角,分别相等,这一条件作为隐含条件,因此可以直接使用(4)在两条直线相交所得的四个角中,其中有公共顶点但没有公共边的两个角是对顶角,有公共顶点且有一条公共边的两个角都是邻补角2垂线的相关定义垂直:当两条直线相交所形成的 4 个角中,有一个角是直角时,就说这两条直线相互垂直。垂线:当两条直线相互垂直时,其中一条直线叫做另一条直线的垂直点到直线的距离:直线外一点与直线上各点的所有线段中,垂线最短,简称“垂线段最短”注:1 垂线是直线,垂线段是线段2 斜线段有无数条,而垂线段只有一条3 在比较两条线段的长短时,要弄清那一条是垂线3
23、平行线定义:在同一平面内,永不相交的两条直线叫做平行线。直线 a 与 b 平行,记 a/b画法:一落-把三角尺一边落在已知直线上 二靠-用直尺紧靠三角形的另一边 三移-把三角形沿直尺的边推到三角尺的第一边恰好经过已知点的位置四画-沿三角尺过已知点的边画直线(3)平行线的公理及其推论 平行公理:经过直线外的一点,有且只有一条直线与这条直线平行,推论:如果两直线都与第三条直线平行,那么着两条直线互相平行4)平行线的判定同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行(5)平行线的性质两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补注:平行线的性质和平行线判定的区别 判定是由角相等或互补推出的直线平行,性质是由直线平行推出的角的相等或互补