收藏 分销(赏)

第4章 三铰拱和悬索结构的受力分析.ppt

上传人:xrp****65 文档编号:13183562 上传时间:2026-01-31 格式:PPT 页数:36 大小:1.41MB 下载积分:10 金币
下载 相关 举报
第4章 三铰拱和悬索结构的受力分析.ppt_第1页
第1页 / 共36页
第4章 三铰拱和悬索结构的受力分析.ppt_第2页
第2页 / 共36页


点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,All Rights Reserved,重庆大学土木工程学院,*,第,4,章三铰拱和悬索结构的受力分析,本章教学的基本要求:,了解三铰拱的受力特点,掌握三铰拱支反力及指定截面内力的计算方法;了解三铰拱压力线的概念,了解三铰拱在几种常见荷载作用下的合理拱轴方程。,本章教学内容的重点:,三铰拱支反力和内力的计算方法。,本章教学内容的难点:,三铰拱的压力线和合理拱轴。,All Rights Reserved,重庆大学土木工程学院,本章内容简介,:,4.1,拱结构的形式和特性,4.2,三铰拱的内力计算,4.3,三铰拱的压力线和合理拱轴,4.4*,悬索结构,第,4,章三铰拱和悬索结构的受力分析,All Rights Reserved,重庆大学土木工程学院,4.1,拱结构的形式和特性,4.1.1,拱结构,在竖向荷载作用下,支座会产生向内的水平反力,(,推力,),的曲线形结构,称为拱结构。,F,P,F,P,F,P,F,P,F,HA,F,HB,F,VA,F,VB,F,VA,F,VB,F,HA,=0,a),拱结构,b),曲梁,All Rights Reserved,重庆大学土木工程学院,4.1.2,拱结构的形式,1.,基本形式,一般有三铰拱、两铰拱和无铰拱三种基本形式。,拱,趾,拱趾,跨度,l,拱高,f,拱顶,起拱线,拱身,三铰拱,二铰拱,无铰拱,4.1,拱结构的形式和特性,All Rights Reserved,重庆大学土木工程学院,2.,带拉杆的拱结构,4.1.3,拱结构的力学特性,拱结构截面内一般有弯矩、剪力和轴力,但在竖向荷载作用下,由于有水平推力的存在,使得其,弯矩和剪力都要比同跨度、同荷载的梁小得多,而其轴力则将增大,。因此,在竖向荷载作用下,,拱结构主要承受压力,。,拉杆,拉杆,拉杆,4.1,拱结构的形式和特性,All Rights Reserved,重庆大学土木工程学院,4.2,三铰拱的内力计算,4.2.1,支反力的计算,1.,竖向反力,拱的竖向反力与相当简支梁的竖向反力相同。,F,P1,F,P1,F,P2,F,P2,l,/2,l,/2,l,/2,l,/2,l,l,a,1,a,2,A,A,B,B,C,C,K,K,F,H,A,F,H,B,F,V,A,F,VB,x,y,f,M,0,图,All Rights Reserved,重庆大学土木工程学院,2.,水平反力,F,H,A,=,F,H,B,=,F,H,由三铰拱整体平衡条件 ,可得,取铰,C,左边隔离体,由 ,可得,F,P1,F,P1,F,P2,F,P2,l,/2,l,/2,l,/2,l,/2,l,l,a,1,a,2,A,A,B,B,C,C,K,K,F,H,A,F,H,B,F,V,A,F,VB,x,y,f,4.2,三铰拱的内力计算,,,All Rights Reserved,重庆大学土木工程学院,【,小结,】,(1),三铰拱支反力计算公式为,(2),支反力与,l,和,f,(,亦即三个铰的位置)以及荷载情况有关,而与拱轴线形状无关。,(3),推力,F,H,与拱高成反比。拱愈低,推力愈大;如果,f,0,,则,f,,,这时,三铰在一直线上,成为几何可变体系。,4.2,三铰拱的内力计算,All Rights Reserved,重庆大学土木工程学院,4.2.2,内力的计算,试求指定截面,K,的内力。约定弯矩以拱内侧受拉为正。,(1),由,M,K,=0,,,得,(2),由,F,R,=0,,,得,(3),由,F,S,=0,,,得,K,l,/2,l,/2,l,/2,l,/2,l,l,F,P1,F,P1,F,P1,F,P2,F,P2,F,P1,x,x,y,y,F,H,A,F,H,A,A,A,A,B,B,F,V,A,F,V,A,F,V,B,F,HB,C,C,K,K,a,2,a,1,0,K,R,S,F,H,j,M,4.2,三铰拱的内力计算,All Rights Reserved,重庆大学土木工程学院,(1),三铰拱的内力计算公式(竖向荷载、两趾等高),(2),由于推力,F,H,的存在(注意前两个计算式右边的第二项),拱与相当简支梁相比较,其截面上的弯矩和剪力将减小。弯矩的降低,使拱能更充分地发挥材料的作用。,(3),在竖向荷载作用下,梁的截面内没有轴力,而拱的截面内轴力较大,且一般为压力(拱轴力仍以拉力为正、压力为负)。,4.2,三铰拱的内力计算,【,小结,】,All Rights Reserved,重庆大学土木工程学院,(4),内力与拱轴线形式,(,y,j,),有关。,(5),关于,j,值的正负号:左半跨,j,取正号;右半跨,j,取负号,即式,(4-2),中,,cos,(-,j,)=,cos,j,,,sin(-,j,)=-,sin,j,。,4.2.3,内力图的绘制,一般可将拱沿跨长分为若干等分(如,8,、,12,、,20,等分),应用式(,4-2,)分别计算其内力值(注意:各截面的,x,、,y,和,j,均不相同,可列表计算,见例(,4-1,),然后逐点描迹,连成曲线。弯矩绘在受拉侧,剪力图和轴力图须注明正负号。,4.2,三铰拱的内力计算,【,小结,】,All Rights Reserved,重庆大学土木工程学院,【,例,4-1】,已知拱轴线方程 ,试作图示三铰拱的内力图。,解:,(1),计算支反力,q,=10kN/m,F,P,=40kN,A,A,B,C,D,E,f,=4m,x,y,y,E,F,H,=60kN,F,H,=,60kN,j,E,4m,4m,4m,4m,l,=16m,F,V,A,=70kN,F,V,B,=,50kN,B,C,D,E,q,=10kN/m,F,P,=40kN,16m,4.2,三铰拱的内力计算,All Rights Reserved,重庆大学土木工程学院,(2),计算各截面几何参数(,y,和,j,),1),求,y,将,l,和,f,代入拱轴线方程,得,2),求,j,代入各,x,值,即可查得相应的,值。,为绘内力图,将拱沿跨度分为,8,个等分,计有,9,个控制截面,求出各截面的,y,、,j,等值,列于表中。,4.2,三铰拱的内力计算,q,=10kN/m,F,P,=40kN,A,A,B,C,D,E,f,=4m,x,y,y,E,F,H,=60kN,F,H,=,60kN,j,E,4m,4m,4m,4m,l,=16m,F,V,A,=70kN,F,V,B,=,50kN,B,C,D,E,q,=10kN/m,F,P,=40kN,16m,All Rights Reserved,重庆大学土木工程学院,(3),计算内力,以截面,E,为例,计算其内力值。,将,x,=12m,代入,y,和 式中,得,y,E,=3m,,,=,-,0.5,,,查得,j,E,=,-,2634,。因此,有,sin,j,E,=-0.447,cos,j,E,=0.894,将上述截面,E,的各相关值代入公式,即可得各内力值,1),弯矩计算,q,=10kN/m,F,P,=40kN,A,B,C,D,E,f,=4m,j,E,y,E,x,y,F,H,=60kN,F,H,=60kN,F,V,A,=70kN,F,V,B,=50kN,4m,4m,4m,4m,l,=16m,4.2,三铰拱的内力计算,All Rights Reserved,重庆大学土木工程学院,2),剪力计算,3),轴力计算,4.2,三铰拱的内力计算,All Rights Reserved,重庆大学土木工程学院,用同样的方法和步骤,可求得其它控制截面的内力。列表进行计算,如表,4-1,所示。,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,All Rights Reserved,重庆大学土木工程学院,(4),作内力图,M,图,(,kNm,),15,15,20,5,5,20,A,A,A,A,B,B,B,B,C,C,C,C,D,D,D,D,E,E,E,E,F,Q,图,(,kN,),7.1,4,4.9,10,4.9,17.9,17.9,4,7,F,N,图,(,kN,),91.9,78,67,60.6,60,60.6,78,77.8,76,58.1,q,=10kN/m,F,P,=40kN,f,=4m,F,H,=60kN,F,H,=60kN,F,V,A,=70kN,F,V,B,=50kN,4m,4m,4m,4m,l,=16m,x,y,y,E,j,E,4.2,三铰拱的内力计算,All Rights Reserved,重庆大学土木工程学院,q,【,讨论,】,对于如图,4-5a,所示的二次抛物线三铰拱:,(1),当仅在左半跨或右半跨作用均布荷载,q,时,其,M,图都是反对称的,如图所示;而,F,Q,图都是对称的。,仅在左半跨作用均布,荷载时的,M,图,仅在右半跨作用均布,荷载时的,M,图,仅在左半跨作用均布,荷载时的,F,Q,图,仅在右半跨作用均布,荷载时的,F,Q,图,4.2,三铰拱的内力计算,All Rights Reserved,重庆大学土木工程学院,(2),显见,当全跨同时作用均布荷载,q,时,,M,图将为零,,F,Q,图也将为零,(,只须将相应内力图相叠加,即可得到验证,),,拱仅受轴向压力,F,N,作用。,仅在左半跨作用均布,荷载时的,M,图,仅在右半跨作用均布,荷载时的,M,图,仅在左半跨作用均布,荷载时的,F,Q,图,仅在右半跨作用均布,荷载时的,F,Q,图,4.2,三铰拱的内力计算,All Rights Reserved,重庆大学土木工程学院,(3),这种在给定荷载作用下,拱处于无弯矩状态的拱轴线,是最合理的拱轴线。,4.2.4,带拉杆的三铰拱和三铰拱式屋架的计算,【,例,4-2】,试求图示有水平拉杆的三铰拱在竖向荷载作用下的支反力和内力。,解:该三铰拱由拉杆,AB,来阻止支座的水平位移,因此,拱的一个支座改为可动铰支座。其相当简支梁如图,4-8b,所示。,F,P1,F,P1,F,P2,F,P2,F,P3,F,P3,A,A,B,B,C,C,D,D,E,E,F,F,F,H,F,VA,F,VB,I,I,l,/2,l,/2,l,/2,l,/2,l,l,拉杆,f,l,CF,4.2,三铰拱的内力计算,a),b),All Rights Reserved,重庆大学土木工程学院,(1),计算支反力,由整体平衡条件,S,F,y,=0,、,S,M,B,=0,和,S,M,A,=0,,,可分别求得,F,H,=0,是其计算特点之一。,(2),计算拉杆内力,取截面,I-I,之右为隔离体。由,S,M,C,=0,,,得,F,P3,F,VB,l,/2,B,C,F,I,I,F,S,F,Cx,F,Cy,4.2,三铰拱的内力计算,F,P1,F,P1,F,P2,F,P2,F,P3,F,P3,A,A,B,B,C,C,D,D,E,E,F,F,F,H,F,VA,F,VB,I,I,l,/2,l,/2,l,/2,l,/2,l,l,拉杆,f,l,CF,All Rights Reserved,重庆大学土木工程学院,(3),计算拱身内力,在无拉杆三铰拱的内力计算式中,只需用,F,S,去取代,F,H,,,即可得出有水平拉杆拱身内力计算式为,F,P3,F,VB,l,/2,B,C,F,I,I,F,S,F,Cx,F,Cy,4.2,三铰拱的内力计算,All Rights Reserved,重庆大学土木工程学院,【,例,4-3】,试求图示三铰拱式屋架在竖向荷载作用下的支反力和内力。,解:,(1),计算支反力,(2),计算拉杆内力,(3),计算拱身内力,须注意两个计算特点:一是要考虑偏心矩,e,1,,,二是左、右半跨屋面倾角,j,为定值。于是,可写出拱身内力计算式为,A,B,C,F,H,F,V,A,F,V,B,x,y,f,q,l,/2,l,/2,l,e,1,j,钢拉杆(拉力,F,S,),4.2,三铰拱的内力计算,All Rights Reserved,重庆大学土木工程学院,4.3,三铰拱的压力线和合理拱轴,4.3.1,压力线,1.,压力线的意义,拱中外力对拱身横截面上作用力的合力常为压力,拱各横截面上合力作用点的连线,称为,压力线,,代表拱内压力经过的路线。,如果三铰拱中,某截面,D,左边,(,或右边,),所有外力的合力,F,R,D,已经确定,则由此合力便可分解为该截面形心上的三个内力,r,D,为由截面形心到合力,F,R,D,的垂直距离;,a,D,为合力,F,R,D,与,D,点拱轴切线之间的夹角。,All Rights Reserved,重庆大学土木工程学院,2.,压力线的图解法,(1),确定各截面合力的大小和方向,由力多边形的射线来确定。,F,P1,F,P1,F,P2,F,P2,F,P3,F,P3,F,RA,F,RB,F,RA,F,RB,A,B,C,D,F,G,H,K,1,K,2,K,3,压力线(一种特殊的,索多边形,),12,12,23,23,自行封闭的,力多边形,极点,O,4.3,三铰拱的压力线和合理拱轴,All Rights Reserved,重庆大学土木工程学院,(2),确定各截面合力的作用线,三铰拱各截面合力的作用线可由索多边形中的各索线来确定,当某段内竖向力连续分布时,该段的压力线为曲线。,4.3,三铰拱的压力线和合理拱轴,F,P1,F,P1,F,P2,F,P2,F,P3,F,P3,F,RA,F,RB,F,RA,F,RB,A,B,C,D,F,G,H,K,1,K,2,K,3,压力线(一种特殊的,索多边形,),12,12,23,23,自行封闭的,力多边形,极点,O,All Rights Reserved,重庆大学土木工程学院,3.,压力线的用途,(1),求任一拱截面的内力,(2),选择合理拱轴,由上面分析可知,拱的压力线与拱轴曲线形式无关。因此,有了压力线之后,可以选择合理的拱轴曲线形式,应使拱轴线与压力线尽量接近(以减少弯矩),最好重合(此时截面弯矩为零)。对抗拉强度低的砖石拱和混凝土拱,则要求截面上合力,F,R,作用点不超出,截面核心,(,对于矩形截面,压力线应不超过截面对称轴上三等分的中段范围,),。,4.3,三铰拱的压力线和合理拱轴,All Rights Reserved,重庆大学土木工程学院,4.3.2,三铰拱的合理拱轴线,1.,合理拱轴线,在固定荷载作用下,使拱身各截面处于无弯矩状态的轴线,称为,合理拱轴线,。,2.,合理拱轴的数解法,由 ,得,上式表明,在固定荷载作用下,三铰拱的合理拱轴线,y,与相当简支梁弯矩图的竖标,M,0,成正比。,4.3,三铰拱的压力线和合理拱轴,All Rights Reserved,重庆大学土木工程学院,3.,常见的几种荷载作用下三铰拱的合理拱轴线,三铰拱所承受的主要荷载,常见的有以下三种:,1),满跨竖向均布荷载,如房屋建筑中的拱等。,2),竖向连续分布荷载,如拱桥和地下建筑等。,3),径向均布荷载,如水管、高压隧洞和拱坝等。,下面,分别对这三种荷载作用下三铰拱的合理拱轴线进行推导。,4.3,三铰拱的压力线和合理拱轴,All Rights Reserved,重庆大学土木工程学院,(1),满跨竖向均布荷载作用下,【,例,4-4】,设三铰拱承受沿水平方向均匀分布的竖向荷载,试求其合理拱轴线。,解,:,三铰拱在沿水平方向均匀分布的竖向荷载作用下,其合理轴线为一,抛物线,。在如上所求得的,y,方程中,拱高,f,没有确定。因此,具有不同高跨比的任一抛物线都是合理拱轴。,q,q,A,A,B,B,C,l,/2,l,/2,l,x,y,x,ql,/2,ql,/2,f,4.3,三铰拱的压力线和合理拱轴,All Rights Reserved,重庆大学土木工程学院,(2),竖向连续分布荷载作用下,【,例,4-5】,设在三铰拱的上面回填土,填土表面为水平面。试求在填土容重下三铰拱的合理轴线。设填土的容重为,,,拱所受的竖向分布荷载为,q,=,q,C,+,g,y,。,解:将式 对,x,微分两次,得,用,q,(,x,),表示沿水平线单位长度的荷载值,则,(这就是在竖向荷载作用下拱的合理轴线的微分方程),A,B,C,x,y,f,l,/2,l,/2,q,C,+,g,f,q,C,4.3,三铰拱的压力线和合理拱轴,All Rights Reserved,重庆大学土木工程学院,式中,规定,y,向上为正。对于轴向下的情况,上式右边应该取正号,即,将,q,=,q,C,+,g,y,代入上式,得,这个微分方程的解答可用双曲线函数表示为,4.3,三铰拱的压力线和合理拱轴,All Rights Reserved,重庆大学土木工程学院,两个常数,A,和,B,,,可由边界条件求出如下:,在,x,=0,处,,y,=0,,,得,在,x,=0,处,,=0,,得,B,=0,。,因此,在填土重量作用下,三铰拱的合理轴线是一,悬链线,。,4.3,三铰拱的压力线和合理拱轴,All Rights Reserved,重庆大学土木工程学院,(3),均匀径向荷载作用下,解:从拱中截取一微段,ds,,其受力右上图所示。假设拱处于无弯矩状态,各截面上只有轴力。,4.3,三铰拱的压力线和合理拱轴,【,例,4-6】,设三铰拱承受径向均匀分布的水压力的作用,试求其合理拱轴线。,由微段隔离体的力矩平衡条件 ,有,All Rights Reserved,重庆大学土木工程学院,4.3,三铰拱的压力线和合理拱轴,式中,,r,为微段的曲率半径,不等于零,故必有,d,F,N,=0,。这表明,拱截面上的轴力为一常数。,再由微段隔离体沿,n,-,n,轴的投影平衡条件 ,有,由于,d,j,很小,,取 ,并略去高阶微量,则上式成为,将,d,s,=,r,d,j,代入上式,可得,All Rights Reserved,重庆大学土木工程学院,因为,F,N,为常数,故,r,也为常数。由此可见,在均匀分布水压力作用下,三铰拱的合理拱轴线是,圆弧曲线,。,4.3,三铰拱的压力线和合理拱轴,在实际工程中,同一拱结构往往要受到不同荷载的作用,而对应于不同的荷载就有不同的合理轴线。通常,是以主要荷载作用下的合理轴线作为拱的轴线。这样,在一般荷载作用下,拱仍会产生不大的弯矩。,All Rights Reserved,重庆大学土木工程学院,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 百科休闲 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服