收藏 分销(赏)

第五节数列求和.ppt

上传人:pc****0 文档编号:13179161 上传时间:2026-01-30 格式:PPT 页数:19 大小:402.50KB 下载积分:10 金币
下载 相关 举报
第五节数列求和.ppt_第1页
第1页 / 共19页
第五节数列求和.ppt_第2页
第2页 / 共19页


点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,*,第五节数列求和,基础梳理,数列求和的常用方法,(1),公式法,直接用等差、等比数列的求和公式,掌握一些常见的数列的前,n,项和,1,2,3,n,_,;,1,3,5,(2,n,1),_.,n,2,(2),倒序相加法,如果一个数列,a,n,,与首末两端等“距离”的两项的,和相等或等于同一常数,那么求这个数列的前,n,项,和就可用倒序相加法,如,_,数列的前,n,项和就,是用此法推导的,等差,(3),错位相减法,如果一个数列的各项是由一个等差数列和一个等比数列的,对应项之积构成的,那么这个数列的前,n,项和即可用此法,来求,如,_,数列的前,n,项和就是用此法推导的,等比,(4),裂项相消法,把数列的通项拆成两项之差,在求和时中间的一些项可,以相互抵消,从而求得其和,常见的拆项公式有:,_,;,_,;,_.,(5),分组求和法,有一类数列,既不是等差数列,也不是等比数列,若将这类,数列适当拆开,可分为几个等差、等比或常见的数,列,即先分别求和,然后再合并,形如:,a,n,b,n,,其中,a,n,是等差数列,,b,n,是等比数列;,a,n,基础达标,(,原创题,),数列,1,0,,,3,,,,,n,2,2,n,,,的前,n,项和为,_,解析:,S,n,1,0,(,3),n,2,2,n,(3,2),(4,4),(5,8),(,n,2,2,n,),(3,4,5,n,2),(2,4,8,2,n,),n,(,n,5),2,n,1,2.,2.(,必修,5P,40,引例改编,),若,x,1,x,2,1,,且,f,(,x,1,),f,(,x,2,),则,f,f,f,_.,解析:,x,1,x,2,1,,,f,(,x,1,),f,(,x,2,),又,令,S,S,2,S,(,n,1),S,3.(,必修,5P,62,复习题,7,改编,),数列,a,n,的前,n,项和为,S,n,,若,a,n,则,S,5,_.,解析:,a,n,S,5,4.(,必修,5P,54,例,3,改编,),_.(,x,0,,,y,1,,,x,1),解析:,x,0,,,x,1,,,y,1,,,5.(,必修,5P,58,习题,6,改编,),求数列,1,3,a,5,a,2,7,a,3,,,,,(2,n,1),a,n,1,,,(,a,0),的前,n,项和,解析:当,a,1,时,数列变为,1,3,5,7,,,,,(2,n,1),,,,,S,n,1,3,5,7,(2,n,1),当,a,1,时,有,S,n,1,3,a,5,a,2,7,a,3,(2,n,1),a,n,1,,,aS,n,a,3,a,2,5,a,3,7,a,4,(2,n,1),a,n,,,令,,得,S,n,aS,n,1,2,a,2,a,2,2,a,3,2,a,4,2,a,n,1,(2,n,1),a,n,,,即,(1,a,),S,n,1,2,(2,n,1),a,n,.,1,a,0,,,S,n,经典例题,题型一利用错位相减法求和,【,例,1,】,(2011,扬州中学高三上学期期中考试,),已知数列,a,n,的前,n,项和,S,n,n,2,2,n,,设数列,b,n,满足,a,n,log,2,b,n,.,(1),求数列,a,n,的通项公式;,(2),求数列,b,n,的前,n,项和,T,n,;,(3),设,G,n,a,1,b,1,a,2,b,2,a,n,b,n,,求,G,n,.,分析,(1),由,S,n,与,a,n,的关系求出,a,n,的通项公式;,(2),可证数列,b,n,是等比数列,直接用等比数列的前,n,项和公式,求解;,(3),由,G,n,a,1,b,1,a,2,b,2,a,n,b,n,的特点可知,应用错位相,减法求和,解:,(1),S,n,n,2,2,n,,,当,n,2,时,,a,n,S,n,S,n,1,2,n,1,;当,n,1,时,,a,1,S,1,3,,,也满足上式,,综上所述,,a,n,2,n,1.,(2),由,a,n,log,2,b,n,得,b,n,2,a,n,2,2,n,1,,,数列,b,n,是等比数列,其中,b,1,8,,,q,4.,T,n,2,3,2,5,2,2,n,1,(3),G,n,3,2,3,5,2,5,(2,n,1),2,2,n,1,,,4,G,n,3,2,5,5,2,7,(2,n,1),2,2,n,1,(2,n,1),2,2,n,3,,,两式相减得:,3,G,n,3,2,3,(2,2,5,2,2,7,2,2,2,n,1,),(2,n,1),2,2,n,3,;,24,(2,n,1),2,2,n,3,即,3,G,n,24,(2,6,2,8,2,2,n,2,),(2,n,1)2,2,n,3,变式,1,1,(2010,四川,),已知等差数列,a,n,的前,3,项和为,6,,前,8,项和为,4.,(1),求数列,a,n,的通项公式;,(2),设,b,n,(4,a,n,),q,n,1,(,q,0,,,n,N,*,),,求数列,b,n,的前,n,项和,S,n,.,解析:,(1),设,a,n,的公差为,d,,由已知得,解得,a,1,3,,,d,1.,故,a,n,3,(,n,1),4,n,.,(2),由,(1),的解答可得,,b,n,n,q,n,1,,于是,S,n,1,q,0,2,q,1,3,q,2,n,q,n,1,,,若,q,1,,将上式两边同乘以,q,有,qS,n,1,q,1,2,q,2,(,n,1),q,n,1,n,q,n,,,两式相减得,(,q,1),S,n,nq,n,1,q,1,q,2,q,n,1,nq,n,于是,S,n,若,q,1,,则,S,n,1,2,3,n,所以,S,n,题型二利用裂项相消法求和,【,例,2,】,(2010,山东,),已知等差数列,a,n,满足:,a,3,7,,,a,5,a,7,26,,,a,n,的前,n,项和为,S,n,.,(1),求,a,n,及,S,n,;,(2),令,b,n,(,n,N,*,),,求数列,b,n,的前,n,项和,T,n,.,分析本题考查等差数列的通项公式与前,n,项和公式的应用、裂项法求数列的和,熟悉数列的基础知识是解答好本题的关键,解:,(1),设等差数列,a,n,的公差为,d,,因为,a,3,7,,,a,5,a,7,26,,,所以有,解得,a,1,3,,,d,2,,,所以,a,n,3,2(,n,1),2,n,1,;,S,n,3,n,2,n,2,2,n,.,(2),由,(1),知,a,n,2,n,1,,所以,b,n,所以,T,n,变式,2,1,已知在等比数列,a,n,中,,a,1,2,,公比,q,2,,又在等差数,列,b,n,中,,b,2,a,1,,,b,8,a,3,.,(1),求数列,b,n,的通项公式,b,n,及前,n,项和,S,n,;,(2),若,c,n,求数列,c,n,的前,n,项和,T,n,.,解析:,(1),由已知,a,3,a,1,q,2,8,,,则,设,b,n,的首项为,b,1,,,公差为,d,,,则,解得,b,1,1,,,d,1,,,故,b,n,1,(,n,1),1,n,,,S,n,n,1,1,(2),由,(1),知,c,n,T,n,c,1,c,2,c,n,2,题型三倒序相加法求和,的图象上有两点,P,1,(,x,1,,,y,1,),,,【,例,3】,设函数,f,(,x,),P,2,(,x,2,,,y,2,),,若,P,为,P,1,P,2,的,中点,且,P,点的横坐标为,(1),求证:,P,点的纵坐标为定值,并求出这个值;,(2),求,的值,分析,(1),由已知函数图象上两点,P,1,,,P,2,,可得,设,P,(,x,,,y,),,根据中点坐标公,式去求,y,(2),根据,(1),的结论:若,x,1,x,2,1,,则由,f,(,x,1,),f,(,x,2,),1,,,可以得到,利用倒序相加法求解,解:,(1),点,P,为,P,1,P,2,的中点,,x,1,x,2,1,,,y,P,又,y,1,y,2,y,P,(2),由,x,1,x,2,1,,得,y,1,y,2,f,(,x,1,),f,(,x,2,),1,,,f,(1),设,S,n,又,S,n,2,S,n,2,f,(1),n,2,即,S,n,变式,3,1,如果函数,f,(,x,),满足:对任意的实数,m,、,n,都有,f,(,m,),f,(,n,),f,(,m,n,),且,f,(1005),2,,求,f,(2),f,(4),f,(6),f,(2008),的值,解析:由,f,(,x,),对任意实数,m,、,n,都有,f,(,m,),f,(,n,),f,(,m,n,),,得,f,(1005),f,(1005),f,(2010),2,2,4,;,f,(2),f,(2008),f,(2010),4,;,f,(1004),f,(1006),4.,令,S,f,(2),f,(4),f,(6),f,(2008),,,又,S,f,(2008),f,(2006),f,(2),,,所以,2,S,f,(2),f,(2008),f,(4),f,(2006),f,(2008),f,(2),41 004,4016,,故,S,4016,2008.,题型四分组法求和,【,例,4,】,(2011,南京师大附中模拟,),各项均为正数的数列,a,n,的前,n,项和为,S,n,,,S,n,a,n,2,a,n,(,n,N,*,),(1),求,a,n,的通项公式;,(2),令,b,n,c,n,b,2,n,4,(,n,N,*,),,求,c,n,的前,n,项和,T,n,.,分析,(1),根据,a,n,与,S,n,的关系求解,(2),n,3,时,,c,n,2,n,1,2,,故求,c,n,的前,n,项和使用分组法求和,解:,(1),a,1,S,1,a,1,a,1,0,,,a,1,0,,,a,1,2,;,当,n,2,时,,a,n,S,n,S,n,1,a,n,a,n,1,,,(,a,n,a,n,1,),0,,即,(,a,n,a,n,1,)(,a,n,a,n,1,2),0,a,n,0,,,a,n,a,n,1,2,,,a,n,为等差数列,,a,n,2,n,(,n,N,*,),(2),c,1,b,6,b,3,a,3,6,,,c,2,b,8,b,4,b,2,b,1,a,1,2,,,n,3,时,,c,n,b,2,n,4,b,2,n,1,2,b,2,n,2,1,a,2,n,2,1,2,n,1,2,,,此时,,T,n,8,(2,2,2),(2,3,2),(2,n,1,2),2,n,2,n,;,T,n,变式,4,1,求和:,S,n,解析:当,x,1,时,,当,x,1,时,,S,n,4,n,.,链接高考,(2010,重庆,),已知,a,n,是首项为,19,,公差为,2,的等,差数列,,S,n,为,a,n,的前,n,项和,(1),求通项,a,n,及,S,n,;,(2),设,b,n,a,n,是首项为,1,,公比为,3,的等比数列,求,数列,b,n,的通项公式及其前,n,项和,T,n,.,知识准备:,1.,要熟悉等差数列、等比数列的通,项公式与前,n,项和公式;,2.,熟悉数列求和的分组法求和,(1),因为,a,n,是首项为,a,1,19,,公差,d,2,的等差数列,,所以,a,n,19,2(,n,1),2,n,21,,,S,n,19,n,(,2),n,2,20,n,.,(2),由题意,b,n,a,n,3,n,1,,所以,b,n,3,n,1,2,n,21,,所以,T,n,S,n,(1,3,3,n,1,),n,2,20,n,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 百科休闲 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服