资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,要点疑点考点,课 前 热 身,能力,思维,方法,延伸,拓展,误 解 分 析,第5课时 数列的通项与求和,要点疑点考点,求数列的前,n,项和,S,n,,,重点应掌握以下几种方法:,1.倒序相加法:,如果一个数列,a,n,,,与首末两项等距的两项之和等于首末两项之和,可采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和,这一求和的方法称为倒序相加法.,2.错位相减法:,如果一个数列的各项是由一个等差数列与一个等比数列对应项乘积组成,此时求和可采用错位相减法.,3.分组转化法:,把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两部分,使其转化为等差或等比数列,这一求和方法称为分组转化法.,4.裂项相消法:,把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前,n,项的和变成首尾若干少数项之和,这一求和方法称,为裂项相消法.,5.公式法求和:,所给数列的通项是关于,n,的多项式,此时求和可采用公式法求和,常用的公式有:,返回,课 前 热 身,1.数列,a,n,的前,n,项和,S,n,=n,2,+,1,,则,a,n,=_,.,2.,已知,a,n,的前,n,项和,S,n,=n,2,-,4,n+,1,,则,|,a,1,|+|a,2,|+|a,10,|=,(),(A)67 (B)65 (C)61 (D)56,3.,一个项数是偶数的等比数列,它的偶数项的和是奇数项和的2倍,又它的首项为1,且中间两项的和为24,则此等比数列的项数为(,),(A)12 (B)10 (C)8 (D)6,A,C,5.,数列 的前,n,项之和,为,S,n,,,则,S,n,的值得等于(,),(A)(B),(C)(D),4.,计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”,如(1101),2,表示二进制数,将它转换成十进制形式是12,3,+12,2,+02,1,+12,0,=1,3,,那么将二进制数(11111),2,位转换成十进制形式是(,),(,A)2,17,-2 (B)2,16,-2 (C)2,16,-1 (D)2,15,-1,16,C,A,返回,能力,思维,方法,1.,求下列各数列前,n,项的和,S,n,:,(1)14,25,36,,n,(,n,+3),(2),(3),【解题回顾】对类似数列(3)的求和问题,我们可以推广到一般情况:设,a,n,是公差为,d,的等差数列,则有,特别地,以下等式都是式的具体应用:,上述方法也称为“升次裂项法”.,;,2.求数列,a,,,2a,2,,,3a,3,,,,,na,n,,(,a,为常数)的前,n,项的和.,【解题回顾】若一个数列的各项是由一个等差数列与一个等比数列的对应项乘积组成,则求此数列的前,n,项和多采用错位相减法,【解题回顾】当本题解出,S,n,+1,/,S,n,=(n+1),2,/,(n+2)n,,,下面要想到迭代法求,S,n,,(,即选乘),同样如得出,S,n,+1,-,S,n,=f(n),,,可用迭差.,3.已知数列,a,n,中的,a,1,=1/2,,前,n,项和为,S,n,若,S,n,=n,2,a,n,,,求,S,n,与,a,n,的表达式.,4,若数列,a,n,中,,a,n,=-,2,n-(,-1,),n,,,求,S,10,和,S,99,【解题回顾】若构成数列的项中含有,(-1),n,,,则在求和,S,n,时,一般要考虑,n,是奇数还是偶数.,返回,延伸,拓展,返回,5.,在数列,a,n,中,,a,n,0,,,2,S,n,=,a,n,+1,(,n,N),求,S,n,和,a,n,的表达式;,求证:,【解题回顾】利用,,,再用裂项法求和.利用,此法求和时,要细心观察相消的规律,保留哪些项等.必要时可适当地多写一些项,防止漏项或增项.,误解分析,2求数列前,n,项和时,一定要数清项数,选好方法,否则易错,1.求数列通项时,漏掉,n=,1,时的验证是致命错误.,返回,
展开阅读全文