收藏 分销(赏)

正截面抗弯承载力计算.pptx

上传人:a199****6536 文档编号:13044259 上传时间:2026-01-10 格式:PPTX 页数:88 大小:7.82MB 下载积分:18 金币
下载 相关 举报
正截面抗弯承载力计算.pptx_第1页
第1页 / 共88页
正截面抗弯承载力计算.pptx_第2页
第2页 / 共88页


点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,#,抗弯计算,1,3.1,概 述,箍筋,弯起钢筋,(,斜筋,),纵筋弯起形成,抗剪钢筋:腹筋,抗弯钢筋:纵筋,纵向受拉钢筋,纵向受压钢筋,架立钢筋(纵向构造钢筋)形成受力骨架,箍筋,弯起钢筋,纵向钢筋,架立钢筋,纵向构造钢筋,3.1.1,梁中主要钢筋名称,2,3.1.2,受弯构件,承受弯矩和剪力共同作用的构件。梁和板是典型的受弯构件,是土木工程中数量最多,使用面最广的一类构件。,梁与板的区别:梁的截面高度一般都大于其宽度,而板的截面高度远小于其宽度。,截面形式:按施工方式可分为预制梁板与现浇梁板两大类。,预制:预制梁最常用的有矩形和,T,形,有时做成十字形,将板支在伸出的翼缘上,使板的顶面与梁的顶面齐平。现浇:形式很多。当梁与板一起浇灌时,板不但将其上的荷载传递给梁,而且和梁一起构成,T,形或厂形截面共同承受荷载。,3,3.1.3,受弯构件的破坏形式,1,正截面破坏,当受弯构件沿弯矩最大的截面破坏时,破坏截面与构件的轴线垂直,称沿正截面破坏。,2,斜截面破坏,当受弯构件沿剪力最大的截面破坏时,破坏截面与构件的轴线斜交,称沿斜截面破坏。,既要保证构件不发生沿正截面破坏,又要保证构件不发生沿斜截面破坏。因此应分别对,正截面承载力,和,斜截面承载力,进行计算。,3.1.4,受弯构件的设计要求,4,3.2,受弯构件正截面试验研究,3.2.1,试验装置,重点研究受弯构件的正截面受弯性能,采用承受两对称集中荷载的矩形截面简支梁。试验时,采用逐级加荷,荷载由小到大一直加到梁正截面受弯破坏。,纯弯段,剪弯段,剪弯段,应变测点,百分表,5,6,第,阶段:截面应力应变分布(弹性工作阶段):,*,加载初期弯矩较小,截面应力、应变均较小,应变符合平截面假定,应力分布为三角形;,*,随着弯矩增大,受拉区混凝土塑性变形,发展,拉应力分布呈曲线形,受压区混凝土压应力分布仍为三角形;,当受拉区下边缘混凝土拉应变达到混凝土极限拉应变,时受弯构件处于,即将开裂的,a,状态,相应弯矩为,Mcr,3.2.2,适筋梁的受力的三个阶段,7,1,第一阶段:弹性工作阶段(,a,),第,I,阶段的特点是:,1,)砼没有开裂;,2,)受压区砼的应力图形是直线,受拉区砼的应力图形在第,I,阶段前期是直线,后期是曲线;,3,),M-f,基本上是直线关系,,f,增长缓慢。,3.2.2,适筋梁的受力的三个阶段,a,状态是受弯构件抗裂验算的依据。,8,9,10,11,3,第三阶段:钢筋屈服阶段(,a,),第,阶段特点:,1,)受拉钢筋屈服,拉力保持为常值;裂缝截面处,受拉区大部分砼已退出工作,受压区砼压应力曲线图形比较丰满,有上升段曲线,也有下降段曲线;,2,)弯矩略有增加;,3,)受压区边砼压应变达到其极限压变,砼被压碎,截面破坏;,4,),M-f,关系接近水平的曲线。,3.2.2,适筋梁的受力的三个阶段,a,状态是受弯构件承载力计算的依据。,12,第一阶段:弹性工作阶段,(,截面开裂前阶段,a,抗裂验算依据),第二阶段:带裂缝工作阶段(从截面开裂到受拉纵筋屈服阶段,使用阶段变形和裂缝验算依据),第三阶段:钢筋屈服阶段(破坏阶段,a,承载力验算的依据),13,受拉钢筋首先屈服,然后混凝土被压碎,是适筋梁破坏的主要特点。钢筋屈服后的流塑阶段,使得裂缝显著开展,受压混凝土产生很大的塑性变形,挠度显著增长,其破坏形态具有明显的塑性性质,即破坏前有明显的预兆裂缝的开展和挠度的急剧发展。钢筋屈服后,梁破坏前变形的增加表明梁具有较好的变形能力延性。,3.2.3,适筋梁的破坏特点,14,15,3.2.4,钢筋混凝土梁的受力特点,1,混凝土的抗拉强度远低于抗压强度,在不大的变形下就出现裂缝;,2,混凝土是弹塑性材料,当应力超过一定限度就会产生较大的塑性变形;,3,与匀质弹性材料梁不同,钢筋和混凝土的应力和应变与外荷载不成比例,梁的变形和外荷载也不成比例;,4,中和轴高度随着外荷载的变化而变化。,16,配筋率的定义,3.2.5,配筋率对梁破坏特征的影响,-,受拉钢筋的截面面积;,-,梁截面宽度;,-,梁的截面有效高度(截面受压区边缘到受拉钢筋合力点的距离)。,钢筋混凝土梁正截面的破坏形态与配筋率,、钢筋和混凝土的强度有关,17,3.2.5,配筋率对梁破坏特征的影响,1,适筋破坏(图,a,),特点:配筋率适中,受拉钢筋首先屈服,然后受压混凝土被压碎。破坏前有明显的预兆,属于“塑性破坏”(延性破坏),2,超筋破坏,(界限配筋率,最大配筋率),(,图,b),特点:配筋率过大(超过某一界限),受拉钢筋不屈服,受压混凝土被压碎,变形很小,裂缝开展不大。破坏前无明显预兆,属“脆性破坏”,,设计中不允许采用,。,3,少筋破坏,(最小配筋率),(,图,c),特点:配筋率过小(低于最小配筋率),受拉区混凝土一开裂,受拉钢筋即达到屈服,甚至进入强化阶段,裂缝迅速延伸至梁顶,造成破坏;属“脆性破坏”,,在土木工程中不允许采用,。(水利工程中,往往截面尺寸很大,为了经济,有时也允许采用少筋梁。),18,3.3,单筋矩形截面受弯构件正截面承载力计算,架立筋,受力钢筋,双筋截面,单筋截面,单筋截面:仅在受拉区配置纵向受力钢筋;,双筋截面:在受拉区和受压区同时配置纵向受力钢筋。,在单筋截面中为了形成钢筋骨架,受压区通常也需配置纵向架立钢筋;与受力筋的区别:架立筋根据构造要求设置,通常直径较细,根数较少,受力钢筋则是根据受力按计算设置,通常直径较粗、根数较多。,19,3.3,单筋矩形截面受弯构件正截面承载力计算,3.3.1,受弯构件正截面承载力计算简图,受弯构件正截面承载力计算建立在适筋梁的,a,状态。,20,3.3,单筋矩形截面受弯构件正截面承载力计算,(,1,)截面应变保持为平面;,(,2,)不考虑混凝土的抗拉强度;,(,3,)混凝土受压的应力应变曲线采用曲线加直线段;,(,4,)纵向受拉钢筋的应力取等于钢筋应变与其弹性模量的乘积,但其绝对值不应大于其相应的强度设计值。纵向受拉钢筋的极限拉应变取为,0.01,。,1,基本假定,21,其中,cu,为正截面的混凝土极限压应变,当处于非均匀受压时,采用上式计算,当处于轴心受压时,取,0,。,知识点:混凝土受压应力应变曲线,22,2,计算简图的确定,为了简化计算,对于混凝土受压区域,采用等效矩形应力图形代替理论应力图形进行计算。,计算时只需要知道其压应力合力大小及作用点位置,不需压应力实际分布图形。,等效的两个条件:混凝土压应力合力大小相等;作用位置相同,。,23,知识点:等效应力图形参数确定(了解),24,知识点:等效应力图形参数确定,f,cuk,C50,C55,C60,C65,C70,C75,C80,n,2,1.92,1.83,1.75,1.67,1.58,1.50,0,0.002,0.002025,0.002050,0.002075,0.0021,0.002125,0.00215,cu,0.0033,0.003275,0.00325,0.003225,0.0032,0.003175,0.00315,1,1.0,0.99,0.98,0.97,0.96,0.95,0.94,1,0.8,0.79,0.78,0.77,0.76,0.75,0.74,当砼等级,C50,,取,0.8,,,C80,时,取,0.74,,其间线性内插;,当砼等级,C50,,取,1.0,,,C80,时,取,0.94,,其间线性内插;,25,3.3.2,单筋矩形截面计算公式,相对受压区高度,1,基本计算公式,26,3.3.2,单筋矩形截面计算公式,2,基本计算公式适用条件,(,1,)最小配筋率要求,(,防止少筋破坏,),少筋破坏的特点是一裂就坏,从理论上,纵向受拉钢筋的最小配筋率是这样确定:,按,a,阶段计算钢筋混凝土受弯构件正截面受弯承载力与按,a,阶段计算的素混凝土受弯构件正截面受弯承载力两者相等。,但是考虑到混凝土抗拉强度的离散性,以及收缩等因素的影响,在实用上,最小配筋率往往根据传统经验得出。,27,3.3.2,单筋矩形截面计算公式,2,基本计算公式适用条件,(,1,)最小配筋率要求,(,防止少筋破坏,),28,3.3.2,单筋矩形截面计算公式,(,2,)最大配筋率要求(防止超筋破坏),比较适筋梁和超筋梁的破坏,两者的差异在于:前者破坏始自受拉钢筋;后者则始自受压区砼。显然,总会有一个界限配筋率,b,,这时钢筋应力到达屈服强度的同时受压区边缘纤维应变也恰好到达砼受弯时极限压应变值。这种破坏叫,“,界限破坏,”,,即适筋梁与超筋梁的界限。国外多称为,“,平衡配筋梁,”,,而对适筋梁则常称,”,低筋梁,“,。实际工程中不允许采用超筋梁,这个特定的配筋率,b,实质上限制了适筋梁的最大配筋率。,b,时,受拉钢筋应力达到屈服强度的同时受压区砼压碎使截面破坏,。,界限破坏的梁,在实际试验中是很难做到的,因为尽管严格的控制施工质量和应用材料,但实际强度也会和设计时有所预期的有所不同。,29,3.3.2,单筋矩形截面计算公式,(,2,)最大配筋率要求(防止超筋破坏),有明显屈服点的钢筋:,没明显屈服点的钢筋:,30,知识点:最大配筋率与界限相对受压区高度对应,截面最大抵抗矩系数,31,知识点:界限相对受压区高度和截面最大抵抗矩系数,C50,C60,C70,C80,钢筋,I,II,III,I,II,III,I,II,III,I,II,III,b,0.614,0.550,0.518,0.594,0.531,0.499,0.575,0.512,0.481,0.555,0.493,0.463,sb,0.426,0.399,0.384,0.418,0.390,0.375,0.410,0.381,0.365,0.401,0.372,0.356,截面最大抵抗矩系数,有明显屈服点的钢筋:,无明显屈服点的钢筋:,32,3.3.3,基本公式的应用,1,截面设计,已知,b,,,h,,,1,,,c,,,y,,,M,,求,A,s,及选配钢筋。,2,截面校核,已知,b,,,h,,,1,,,c,,,y,,,M,,,A,s,,问,MM,u,否?,33,单筋矩形截面设计计算流程,已知荷载大小、材料特性和几何特性,配筋计算,验算最小配筋率要求,选配钢筋,结束,增大截面尺寸,f,y,,,a,s,合适,重新假定,f,y,,,a,s,34,单筋矩形截面复核计算流程,已知材料特性和几何特性和配筋,计算外荷载,承载力足够,结束,承载力不够,35,对由可变荷载控制的组合:,C20,混凝土,,,解,确定钢筋和混凝土的材料强度,=9.6N/mm,2,,,=,1.10N/mm,2,,,=1.0,,,=,300N/mm,2,,,=0.550,;,HRB335,钢筋,=500mm,,,=250mm,,,=500-35=465mm,(设纵向受拉钢筋排一排);,确定梁的截面尺寸,计算弯矩设计值,安全等级为二级,,=1.0,例题,1,例题讲解,36,对由永久荷载控制的组合:,取,计算受力钢筋截面面积,选用,218+116,,实配,=710.1mm,2,(,P202,附表,18,),注意钢筋符号!,*,验算是否满足最小配筋率及构造的要求,满足要求,37,例题,2,:钢筋混凝土走道板,板上均布活荷载标准值,2.0kN/m,2,,水磨石地面及细石混凝土垫层,30mm,(容重,22kN/m,3,),板底粉刷,12mm,厚(容重,17kN/m,3,),,C25,砼,,HPB235,受力钢筋,环境类别,1,类,确定板厚和钢筋面积。,38,1,确定板的截面尺寸,由于板厚未知时,板计算跨度,l,0,不能确定,先近似按板几何跨度确定板厚,构件高度与跨度关系见表,3-4,(,P50,),h=l,0,/35=2500/35=71.3mm,取板厚,h=80mm,。,板一般取,1m,宽进行计算,即,b=1000mm,一类环境,板的保护层厚度,15mm,,设板的有效高度,h,0,=h,20=80-20=60mm,。,39,2,计算内力,(,1,)计算跨度,l,0,单跨梁板,l,0,可按附表,15,(,P280,):,l,0,=l,n,+h=(2500-1202)+80=2340mm,(,2,)荷载设计值,恒载标,g,k,:水磨石地面,0.03221=0.66KN/m,;板的钢筋砼自重,0.08251=2.0KN/m,;白灰砂浆粉刷,0.012171=0.204KN/m,g,k,=0.66+2.0+0.204=2.86KN/m,活载标准值,:q,k,=2.01.0=2.0kN/m;,1.2g,k,=3.4368 kN/m,1.4q,k,=2.8kN/m,由恒载起控制作用。,由于恒载起控制作用,取恒载分项系数,G,=1.35,荷载设计值:,g+q=1.35g,k,+1.4q,k,=6.6664kN/m,(,3,)跨中最大弯矩值,M=1/8(g+q)l,0,2,=(1/8)6.66642.342=4.5628 kN,m,40,3,材料强度设计值,查附表可得:,c,=11.9 N/mm,2,t=1.27 N/mm,2,;,y,=210N/mm,2,;,b,=0.614,1,=0.8,1,=1.0,。,4,、求,A,s,5,、验算适用条件,查附表,1-21,,,P375,选用,8130,,实配,A,s,=387mm,2,41,例题,3,:单筋矩形截面梁,已知,bh=200500mm,一类环境,,C20,,,c,=9.6N/mm,2,,,t,=1.1N/mm,2,,,y,=300 N/mm,2,,,M=120kN,m,,,1,=1.0,,,1,=0.8,,,b,=0.550,,求,A,s,3 22,实配,3 22,(,A,s,=1140mm,2,),42,例题,4,(教材例题,3,2,):自学(特别注意结论:在截面面积相同时,增加梁高其正截面承载力将显著提高(?),例题,4,某预制钢筋砼平板,,l,0,=1820mm,,,b=600mm,,,h=60mm,,,f,c,=9.6N/mm,2,,,f,y,=210N/mm,2,,受拉区配置,4,根直径为,6mm,钢筋,,A,s,=113mm,2,,,M=920000N,mm,,问,M,是否,M,u,承载力足够!,43,3.3.4,表格制作及应用,内力臂系数,s,存在一一对应的关系,可以制成表格,计算大为简化,教材,P279,,附表,14,。,1,表格的制作,44,3.3.4,表格制作及应用,2,表格的应用,计算步骤:,(,1,)计算截面抵抗矩系数;,(,2),查表得到相对受压区高度和内力臂系数,是否满足最大配筋率的要求;,(,3,)计算钢筋截面面积;,(,4,)验算最小配筋率。,45,例题,5,:单筋矩形截面梁,已知,bh=300600mm,c,=14.3N/mm,2,,,t,=1.43N/mm,2,,,y,=360N/mm,2,,,M=285.66kN,m,,求,A,s,查表得到,0.2366,,,b,=0.55;,s,=0.8817,。,最小配筋率验算(略),46,3.4,双筋矩形截面受弯构件正截面承载力计算,不但在截面的受拉区,而且在截面的受压区同时配有纵向受力钢筋的矩形载面,双筋矩形截面,它适用于下面几种情况:,1 MM,max,=,1,s,bf,c,h,0,2,,而截面,b,、,h,和材料,f,c,、,f,y,等由于某些原因又不能改变;,2,承受某种交变荷载的作用(如风载、振动和地震),使截面上的弯矩改变符号;,在地震作用下门式刚架横梁的内力,47,3,构件的截面由于某种原因,在截面的受压区预先已经布置了一定数量的受力钢筋(如连续梁的某些支座截面)。,48,应该说明,双筋矩形截面的用钢量比单筋截面的多,为节约钢材,应尽可能地不要将截面设计成双筋截面。,但纵向受压钢筋对截面延性、抗裂性和变形等是有利的。,49,3.4.1,计算公式及适用条件,双筋截面受压钢筋是否屈服,与受压区高度有关。根据平截面假定可以得到受压钢筋屈服所要求的最小受压区高度。,梁:受压筋一排布置,梁:受压筋两排布置,板,50,钢种,f,y,E,s,y,x,HPB235,210,2.110,5,0.001,1.15a,s,HRB335,300,2.010,5,0.0015,1.51a,s,HRB400,360,2.010,5,0.0018,1.76a,s,其他,400,2.010,5,0.002,2.03a,s,受压钢筋屈服所要求的最小受压区高度(,C20,),受压钢筋屈服所要求的最小受压区高度(,C20,),51,1,、纵向受压钢筋的抗压强度的取值为,fy,则由平截面假定可得受压钢筋的压应变值,若取,受压钢筋的应力,52,2,、为防止受压钢筋过早向外凸出,应配置封闭箍筋,箍筋间距,为纵向受压钢筋的最小直径,为纵向受压钢筋的最大直径,同时不应大于,400mm,;,箍筋的直径不应小于,受压钢筋的应力,53,3.4.1,计算公式及适用条件,双筋截面的适筋梁破坏特点:受拉钢筋先屈服,,然后受压钢筋屈服,最后混凝土被压碎。,受弯构件正截面承载力计算建立在适筋梁的,a,状态。,54,3.4.1,计算公式及适用条件,55,3.4.1,基本公式及适用条件,1,)基本公式,56,受压区混凝土和与其相应的一部分受拉钢筋承受的弯矩,由两部分组成:,受压钢筋,和与其相应的,承受的弯矩,一部分受拉钢筋,57,叠加得,2,、适用条件,为防止出现超筋破坏(保证受拉钢筋屈服),为保证受压钢筋屈服,双筋截面梁中的受拉钢筋配置较多,一般均能满最小配筋率的要求,可不验算。,58,3.4.1,计算公式及适用条件,不满足,令,对受压钢筋取矩,如果按上式计算的受拉钢筋比不考虑受压钢筋的存在而按单筋截面计算的受拉钢筋还大时,就应按单筋截面计算结果配筋。,59,3.4.2,计算公式的应用,1,截面设计,(,1,)已知,b,,,h,,,1,,,c,,,y,,,y,,,M,,求,A,s,及,A,s,。,(,2,)已知,b,,,h,,,1,,,c,,,y,,,y,,,M,,,As,,求,As,。,2,截面校核,已知,b,,,h,,,1,,,c,,,y,,,M,,,A,s,,问,MM,u,否?,60,3.4.2,计算公式的应用,1,截面设计,(,1,)已知,b,,,h,,,1,,,c,,,y,,,y,,,M,,求,A,s,及,A,s,。,为充分利用混凝土强度节约钢材,补充方程:,61,3.4.2,计算公式的应用,1,截面设计,(,2,)已知,b,,,h,,,1,,,c,,,y,,,y,,,M,,,A,s,,,求,A,s,。,基本公式,查表,充分利用受压钢筋强度时:,62,讨论:,若,若,说明给定的,太少,应按,情况,1,的步骤重新求,若,说明受压钢筋,不能达到屈服,此时有两种偏安全的近似处理方法:,63,令,b.,令,按单筋矩形截面求,按,a,、,b,计算的,均偏安全(大于实际所需的,),所需的,可取,a,、,b,计算结果的较小值。,由于当,时,值不很大,为简化起见,也可以只取,a,的计算结果确定,。,64,双筋矩形截面设计计算流程,已知荷载大小、材料特性和几何特性,配筋计算,验算最小配筋率要求,选配受拉钢筋,结束,已知,65,3.4.2,计算公式的应用,2,截面校核,已知,b,,,h,,,1,,,c,,,y,,,y,,,M,,,A,s,及,A,s,,求承载力?,66,双筋矩形截面校核计算流程,已知荷载大小、材料特性、几何特性、配筋,计算承载力,结束,承载力不足,承载力足够,67,例题,6,:已知,bh=250600mm,,,c,=9.6N/mm,2,,,t,=1.1N/mm,2,,,y,=300N/mm,2,,,M=380kN,m,,,1,=1.0,1,=0.8,b,=0.550,环境为一类。进行配筋计算。,1,判断是否采用双筋截面,2,计算受拉和受压钢筋截面面积,68,例题,6,:已知,bh=250600mm,,,c,=9.6N/mm,2,,,t,=1.1N/mm,2,,,y,=300N/mm,2,,,M=380kN,m,,,1,=1.0,1,=0.8,b,=0.550,环境为一类。进行配筋计算。,3,选配钢筋,受拉钢筋选,8,根直径,22,,,A,s,=3041mm,2,受压钢筋选,2,根直径,22,A,s,=760mm,2,。,69,例题,7,已知,A,s,=1473mm,2,A,s,=402mm,2,c,=14.3N/mm,2,t,=1.43N/mm,2,y,=,y,=300N/mm,2,M=180kN,m,b,=0.55,进行承载力校核。,2,计算承载力,1,计算受压区高度,70,3.5 T,形截面受弯构件正截面承载力计算,在矩形截面受弯构件正截面承载力计算中,不考虑受拉区砼抗拉强度。对尺寸较大矩形截面构件,可将受拉区两侧砼省掉形成,T,形截面,以减轻结构自重,取得经济效果。,有时为需要,也采用翼缘在受拉区的倒,T,形截面或,I,字形截面,由于不考虑受拉区翼缘砼参与工作,因此倒,T,形截面按宽度为,b,的矩形截面计算;,I,形截面按,T,形截面计算。,3.5.1,概述,71,T,形截面的受压翼缘应力分布不均匀,离肋部越远,受力越小。因此规范对翼缘宽度进行了限制(见教材,P69,)。,3.5.1,概述,在,范围内翼缘全部参与工作,并假定其压应力均匀分布。,72,常见,T,形截面构件,73,中和轴在翼缘内,第一类,T,形截面,第二类,T,形截面,中和轴在梁肋内,3.5.2,基本计算公式及适用条件,1,两类,T,形截面及其判别,74,截面设计,第一类,T,形截面,第二类,T,形截面,截面校核,1,两类,T,形截面及其判别,两类,T,形梁的界限(,),判别公式:,75,第一类,T,形截面,(xh,f,),相当于截面宽度为受压翼缘宽度的矩形截面,计算公式为,适用条件,2,第一类,T,形截面计算公式及适用条件,3.5.2,基本计算公式及适用条件,76,适用条件,3,第二类,T,形截面计算公式及适用条件,第二类,T,形截面,(xh,f,),77,3.5.3,基本计算公式应用,截面设计计算流程,已知荷载大小、材料特性和几何特性,配筋计算,验算最小配筋率,结束,修改截面,双筋截面,78,3.5.3,基本计算公式应用,截面校核计算流程,已知荷载大小、材料特性和几何特性、配筋,承载力校核,结束,承载力足够,承载力不够,79,习题讲解,例题:现浇肋形楼盖中的次梁,间距,2.4m,,截面尺寸,b=200mm,,,h=450mm,,,b,f=2000mm,见下图。跨中截面的最大正弯矩,M=90.55kN.m,。混凝土强度等级为,C20,,钢筋采用,HRB335,。环境类别为一类。计算次梁所需受拉钢筋截面面积,As,。,解,钢筋和混凝土的材料强度,C20,混凝土,,=9.6N/mm,2,,,=1.10N/mm,2,,,HRB335,钢筋,,=300N/mm,2,,,=0.550,;,=1.0,,,80,梁的截面尺寸,=200mm,,,=450mm,,,=450-35=415mm,(,设纵向受拉钢筋排一排),,=120mm,=2000mm,判别,T,形截面类型,属于第一类,T,形截面。,=510.72kN-m,=90.55kN-m,求,=0.0274,=0.0278,=738mm2,选,318,(实配,=763mm,2,),81,0.165,(,%,),0.2%,,取,=0.2%,=0.2%,满足要求。,验算适用条件,82,思考题:,双筋,T,形截面梁如何计算?,(纵向受拉钢筋,序 号,1,2,3,4,5,6,7,截面宽度(,mm,),250,250,250,250,250,350,250,截面高度(,mm,),500,500,500,500,500,500,600,混凝土等级,C30,C30,C30,C20,C40,C30,C30,钢筋强度等级,HPB235,HRB335,HRB400,HRB400,HRB400,HRB400,HRB400,讨论例题,已知一矩形截面梁,承受弯矩设计值,=170kN-m,,,求在下列情况下所需纵向受力钢筋的截面面积,排一排),并进行讨论。,83,习题,:,一矩形截面框架梁,支座截面在不同荷载组合下承受正弯矩,负弯矩,采用,C30,及,HRB400,级纵筋,试进行配筋。,84,3.6,受弯构件截面的延性,延性,是指组成结构的材料、组成结构的构件以及结构本身能够维持承载力的同时而具有较大的塑性变形能力。,3.6.1,延性概念,材料延性,构件延性,结构延性,钢材(伸长率、冷弯性能),砼(普通砼、高强砼,钢纤维砼),相互联系,结构设计部分讲述。,85,3.6.2,受弯构件的截面延性,少筋破坏,适筋破坏,超筋破坏,配筋率从小到大,脆性破坏,脆性破坏,延性破坏,最小配筋率控制,设计避免,最大配筋率控制,设计避免,配筋计算控制,86,3.6.3,影响受弯构件延性的因素,配筋率较低梁延性较好(,L3,1,,,L3,4,),配筋率较高梁延性较差,(,L3,14,,,L3,15,),配筋率对延性的影响,87,3.6.3,影响受弯构件延性的因素,A,、,B,为单筋截面,C,、,D,为双筋截面,D,的箍筋较密,88,(,1,)砼强度等级(一般越低越好);,(,2,)钢筋级别(一般越低越好);(,3,)受拉钢筋配筋率(一般越少越好);,(,4,)受压钢筋配筋率(能够改善);,(,5,)箍筋直径、间距(直径增加、间距减小);,(,6,)截面形式(具有受压翼缘的,T,形截面比矩形截面好)。,P76,。,3.6.3,影响受弯构件延性的因素,作业:,3,1,,,3,3,,,3,5,,,3,7,,,3,8,11,,,3,14,,,3,16,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服